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ABSTRACT: A series of webinars and panel discussions were conducted on the topic of the evolving 
role of humans in weather prediction and communication, in recognition of the 100th anniversary 
of the founding of the AMS. One main theme that arose was the inevitability that new tools using 
artificial intelligence will improve data analysis, forecasting, and communication. We discussed 
what tools are being created, how they are being created, and how the tools will potentially  
affect various duties for operational meteorologists in multiple sectors of the profession. Even as 
artificial intelligence increases automation, humans will remain a vital part of the forecast process 
as that process changes over time. Additionally, both university training and professional develop-
ment must be revised to accommodate the evolving forecasting process, including addressing the 
need for computing and data skills (including artificial intelligence and visualization), probabilistic 
and ensemble forecasting, decision support, and communication skills. These changing skill sets 
necessitate that both the U.S. Government’s Meteorologist General Schedule 1340 requirements 
and the AMS standards for a bachelor’s degree need to be revised. Seven recommendations are 
presented for student and forecaster preparation and career planning, highlighting the need for 
students and operational meteorologists to be flexible lifelong learners, acquire new skills, and 
be engaged in the changes to forecast technology in order to best serve the user community 
throughout their careers. The article closes with our vision for the ways that humans can main-
tain an essential role in weather prediction and communication, highlighting the interdependent 
relationship between computers and humans.
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In a rapidly changing world, scientific disciplines must evolve. In this regard, the weather, 
water, and climate enterprise has been a success. The tremendous improvements in human 
forecasting skill in recent decades have largely been the result of applying advances in 

atmospheric science and integrating these advances into the forecast process. These advances 
include the development and implementation of dense data networks, improved numerical 
weather prediction (NWP) models, and faster computers. More recently, artificial intelligence 
(AI), machine learning, and deep learning are improving both weather predictions and the 
communication of weather impacts. Even though these technologies can relieve humans 
of repetitive, boring, or onerous tasks (see the “Definitions” sidebar for types of AI), their 
accuracy may surpass human skill (e.g., Baars and Mass 2005; Novak et al. 2008; Erickson 
et al. 2021). Indeed, weather forecasting has evolved far beyond hand analysis of data, 
interpreting NWP model output, and generating text-based forecasts sent to users at specific 
times. Operational meteorologists use smart tools to selectively edit graphical and/or digital 
databases initialized by NWP guidance. But is editing automated forecasts really “forecasting”? 
How much continuing education, training, and resultant human-added skill is enough to 
justify humans remaining in the forecast process (e.g., Huntemann et al. 2015)?
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Definitions
AI is an increasingly important approach to prediction, but describing every specific technique is beyond 
the scope of this study. Here, we explain the relationship between AI, machine learning, and deep learning.

AI refers to computational systems able to perform tasks that normally require human intelligence, but 
with increased efficiency, precision, and objectivity (NOAA 2020a).

A subset of AI called machine learning refers to mathematical models able to perform a specific task 
without using explicit instructions, instead relying on patterns and inference. The use of labeled training data 
can further improve the AI predictive capability through supervised machine learning.

Deep learning is a subset of machine learning that uses artificial neural networks capable of learning from 
unstructured or newly added data.
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Self-reflection by the meteorological community on how the role of humans in weather  
prediction would evolve is not new (e.g., Snellman 1977; Brooks et al. 1996; McIntyre 1999; Bosart 
2003; Baars and Mass 2005; Stuart et al. 2006; Sills 2009). Some have even stated that forecasting  
might be completely automated in 10–20 years (e.g., Rose et al. 2015), resulting in reductions in 
staffing of operational meteorologists. Proposed plans to adjust or reduce operational staffing 
within the National Weather Service (NWS 2017; NOAA 2020b) can also feed into operational 
meteorologists’ concerns about their roles in a future forecasting environment. These concerns 
can lead to poor workforce morale, reduced performance, and difficulty retaining forecast staff 
(Carrington 2016; Frone and Blais, 2020). However, others argue against humans being replaced by 
automation (e.g., McIntyre 1999; Bosart 2003; Doswell 2004; Baars and Mass 2005; Erkkilä 2007).

There is an ever-evolving balance between the accuracy and speed of producing the forecast 
versus providing decision support for the user community (Murphy 1993), but this balance 
is especially crucial as emphasis shifts to more impact-based decision support services 
(Uccellini and Ten Hoeve 2019). History has shown that automation is not autonomous (see 
the “Misconceptions about the human–computer relationship” sidebar). The human–computer 
relationship is, and will remain, one of interdependence. The discussion should be about 
human plus machine (Karstens et al. 2018), not human versus machine (Hoffman et al. 2017).

Given the continued evolution of weather prediction and communication that has taken place 
since the Symposia on the Future Role of Humans in the Forecast Process in 2004–05 (Stuart 
et al. 2006, 2007), an update was due. The 100th anniversary of the American Meteorological 
Society in 2019 was appropriate for such self-reflection. This article provides that update through 
discussions of what tools are being developed, how they are being developed, and how the tools 
will potentially affect duties for operational meteorologists in the various sectors of the profession.

Misconceptions about the human–computer relationship
The meteorological community must maintain clarity concerning the language that is typically used to discuss 
computers and AI, as well as understand the nature of the human–computer relationship. A number of miscon-
ceptions in terminology have arisen (Bradshaw et al. 2013; Hoffman et al. 2014). One misconception surrounds 
the word “automation.” It is often taken for granted that automation is autonomous, but it never is. A compu-
tational system is never entirely self-sufficient, and its ability to self-direct is always context bound and fragile.

“More automation means we need fewer people” is a misconception, as well. In fact, as the workplace 
becomes more computerized, more people will be needed who are experts at creating, using, and repairing 
the technology (Blackhurst et al. 2011). That means more technical training, more expertise, and greater 
labor costs, not lower labor costs.

Another noteworthy misconception is that all we need is more computer memory and more processing 
power, then a miracle will occur, and the human will no longer be needed. This misconception runs counter 
to established knowledge within the field of AI and leads directly to what may be the most important point 
to make here. Since the days of World War II, the premise of computer technology has been that computers 
have desirable characteristics that compensate for the weakness of humans. Machines are rational, humans 
are emotional; computers have large memory capacity, humans have limited memory capacity. Historically, 
this approach has manifestly ignored the flip side: the limitations of computers and the strengths of humans. 
What we have witnessed is that when the computer’s model of the world becomes misaligned, it is the humans 
who jump in to fix things. In fact, humans and computers are interdependent. Computers have limitations 
and depend on humans to keep them aligned with the world. Humans have strengths and need computers 
to help them maintain situational awareness. As is true for all domains of human activity in which computers 
and AI are becoming a more engulfing aspect of the workplace, the meteorological community must escape 
the “human versus machine” mentality and embrace the “human plus machine” mentality.

A final important point has to do with the apparent promulgation of new AI systems, new data types, new 
visualization tools, etc. This article provides many examples of new systems and products, both operational and 
experimental. The abundance of such systems in an operational forecasting environment may lead to data overload. 
Such overload must be mitigated through operational contingencies and considerations, such that operational 
meteorologists can utilize available information to enhance their situational awareness and promote expertise.
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In this article, we generalize weather prediction to forecasts for all hydrometeorological  
phenomena. We contend that the future forecast process will be dependent on computers and 
AI in the development and use of tools and forecast guidance that will shape the role of humans 
in the weather prediction and communication process. Weather prediction and communication 
will vary from sector to sector within the weather, water, and climate enterprise, and space 
limits the scope of this article. Our examples will draw mainly from the United States and 
the National Weather Service (NWS), although some private-sector and military examples are 
also provided. Even as AI increases automation, we acknowledge that humans will determine 
new ways to guide an ever-changing forecast process. We recognize that the future brings 
considerable uncertainty, and that new developments will inevitably bring changes that we 
cannot fully anticipate at present, in the United States and around the world. We envision 
a range of possible outcomes. One scenario may be that some decades into the future, the 
role of humans in weather forecasting will be largely confined to algorithm development, 
verification activities, and stakeholder relations. However, our consensus view reflects a more 
human-engaged scenario, particularly for communication and decision support.

Methods
A team of 18 meteorologists and 1 cognitive-systems engineer representing all sectors of 
the weather, water, and climate enterprise planned, created, and conducted four webinars 
that were delivered between September 2019 and January 2020 (Table 1). This team agreed 
on four overarching topics related to the evolving role of humans in weather prediction and 
communication into the future:

•	 development of automated forecasting tools,
•	 use of automated forecasting tools,
•	 training and proficiency for future forecasting, and
•	 envisioning the future of weather prediction and communication.

Each of the four webinars (presented in the order above) was attended by users via 60–80 
independent connections (some connections included multiple viewers, so the actual audience 
size was larger). The audience represented a diverse cross section of the weather, water, and 
climate enterprise. After each webinar, questions, comments, and suggestions were provided 
by each audience (www.ametsoc.org/index.cfm/ams/webinar-directory/).

Panel discussions on the same four topics were conducted at the 100th AMS Annual Meeting 
in January 2020 to extend the webinar audience and gather additional perspectives (Table 2). 
There were ~40–80 attendees at each panel discussion. Email correspondence was also received 
from some webinar and panel-discussion attendees, with added input from face-to-face meetings 
with some people whose schedules could not accommodate attendance at the panel discussions. 
In the sections that follow, we summarize these webinars and panel discussions, combining 
the first two subjects (development and use of automated forecasting tools) into one section.

Table 1.  Information on the four webinars that informed this article. Neil Stuart was the moderator for all webinars.

Date Title Presenters URL

23 Oct 2019 Developing Tools for Forecasting and Communication: The Human 
Role in Their Design

Dan Nietfeld, Falko Judt, Greg West, 
Patrick Market, and Robert Hoffman

https://bit.ly/3k6xj21

22 Nov 2019 The Evolving Role of Humans in Weather Prediction and Communication: 
The Human/Automation Relationship—How can we best use AI tools?

Gail Hartfield, Jeffrey Fries, Bruce 
Telfeyan, and Robert Hoffman

https://bit.ly/33bzoCP

4 Dec 2019 The Evolving Role of Humans in Weather Prediction and 
Communication: Training and Proficiency for Future Forecasting

David Schultz, Harold Brooks, Gary 
Lackmann, and Paul Roebber

https://bit.ly/2R8vu89

8 Jan 2020 The Evolving Role of the Human in Weather Prediction and 
Communication: Envisioning the Future Forecast Process

Dan DePodwin, Holly Obermeier, 
Katie Wilson, and Elliot Abrams

https://bit.ly/3hf88IG
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Development and use of automated forecasting tools
Automated tools can be divided into three broad categories representing the operational fore-
cast process: those that improve data quality, analysis, and assimilation; those that improve 
the accuracy of weather forecasts and warnings; and those that improve communication. In 
this section, we provide an overview of some of the operational and experimental tools being 
used within each of these categories.

Automated tools that improve data quality, analysis, and assimilation. These tools identify 
unrepresentative observations and determine an optimal interpolation between representa-
tive observations, while combining them with first-guess model fields. They also provide error 
statistics, dynamical relationships, and quality control (i.e., data assimilation). Once datasets 
have been quality controlled and considered the best representation of the current state of 
the atmosphere, NWP models can be initialized and integrated forward in time, and derived 
fields can be generated from their output. These steps are mostly automated, with such tools 
being used to quality control radar data (e.g., Lakshmanan et al. 2007), quality control hydro-
logical data (e.g., Zhao et al. 2018), correct model bias in data assimilation (e.g., Berry and 
Harlim 2017), and incorporate remote sensing data into NWP (e.g., Boukabara et al. 2019).

AI tools can be used to improve analyses that serve as the analysis of record for model 
verification. These include advancements within two critical NWS analysis programs, the 
Real-Time Mesoscale Analysis and the Unrestricted Mesoscale Analysis, which are used as the 
training datasets and verifying observational datasets for the surface forecasts for the National 
Blend of Models (Tew et al. 2016; Craven et al. 2020). Both the Real-Time and Unrestricted 
Mesoscale Analyses are also used to bias correct inputs into the National Blend of Models. In 
addition, the Storm Prediction Center (SPC) produces automated objective analyses of upper-air  
and surface data (www.spc.noaa.gov/exper/mesoanalysis/help/begin.html) that are initialized  
using NWP (RAP model output). Operational meteorologists use analyses such as these from 
the SPC to assess the synoptic-scale and mesoscale environments, although these analyses 
are not without error (e.g., Privé and Errico 2013). AI will also be used increasingly in the 
future of data quality and processing, identifying, and correcting erroneous observations, 
and improving interpolation between observation points. Machine learning is also required 
to optimize initial conditions for convection-allowing models (i.e., models with convective 
parameterizations turned off so that they explicitly simulate convection, typically at horizontal 
grid spacing of 4 km or less and time scales of 0–48 h).

Operational meteorologists realize tools that operate behind the scenes, such as quality 
control of observations and interpolation between observation points, are critical to the 
performance of NWP models. Without such tools, humans would struggle to quality control 
the vast amounts of data going into NWP models. However, operational meteorologists must 

Table 2.  Information on four panel discussions at the 100th AMS Annual Meeting on 15 Jan 2020 that informed this article. 
Neil Stuart was the moderator for all panel discussions. No recordings were made of the panel discussions. Any differences 
between the list of panelists in in the panel discussions and the official AMS Annual Meeting program (https://ams.confex.com/
ams/2020Annual/meetingapp.cgi/Program/1441) are due to listed presenters not in attendance and being replaced with others.

Time Title Panelists

0830–1000 LT Development of Automated Forecasting Tools: Types and the Human Role 
in Their Design

Gail Hartfield, Falko Judt, Daniel Nietfeld, and 
Gregory West

1030–1200 LT The Evolving Role of the Human in Weather Prediction and Communication: 
Use of Automated Forecasting Tools vs Humans

Jeffrey Fries, Gail Hartfield, Jerry Shields, and 
Bruce Telfeyan

1330–1430 LT The Evolving Role of the Human in Weather Prediction and Communication: 
Training and Proficiency for Future Forecasting

Teresa Bals-Elsholz, Harold Brooks,  
Gary Lackmann, and Paul Roebber

1500–1600 LT The Evolving Role of the Human in Weather Prediction and Communication: 
Envisioning the Future Forecast Process

Elliot Abrams, Daniel DePodwin, Gail Hartfield, 
Holly Obermeier, and Katie A. Wilson
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still look critically at real-time observations including examining satellite data, surface 
and upper-air analyses, radar data, and soundings. Operational meteorologists bring value  
to the forecast process through quality control of data and NWP model guidance (such as 
satellite data overlaid with model initialization), identifying areas where model initialization 
is poor or where models are not performing well. They also must be vigilant to recognize when 
an automated process has gone awry (see the “Misconceptions about the human–computer 
relationship” sidebar).

Automated tools that improve weather forecasts and warnings. The interfaces that humans 
are, and will be, using in the forecast process influence the development of tools for weather 
predictions and warnings. In the NWS and U.S. Air Force, an emerging generation of smart 
tools is becoming available to enable forecaster manipulation of deterministic gridded weather 
elements, based on preferred model or ensemble output. The AWIPS Graphical Forecast 
Editor allows a gridded database to be initialized by, or blended with, many choices of data and 
NWP deterministic and ensemble guidance. The U.S. Air Force’s Forecaster-in-the-Loop (FITL)-
to-Grib (F2G) toolkit (Fries 2014) optimizes characterization of aviation hazards. Although 
NWS and Air Force operational meteorologists can still control the forecast by deciding on 
the deterministic model or model blend with which to produce an initial set of forecast fields 
and making alterations, the increasing accuracy of input sources will likely reduce this role 
in the future to only high-impact events.

In contrast, the private sector uses different interfaces and tools. One example is the 
Applications Programming Interface using Microsoft Windows in the “Human Over the Loop” 
paradigm at The Weather Channel (Rose et al. 2015). Operational meteorologists use filters 
and qualifiers to edit geonavigated digital polygons where real-time observations and NWP 
output flow through the database (Fig. 1), highlighting the interdependence between humans 
and machines. Another example is IBM’s Deep Thunder, which uses deep learning to create 
localized forecasts (Treinish et al. 2003; Ferrucci 2012). Additionally, Google uses radar data 
and convolutional neural networks for nowcasting (0–6-h forecasting) precipitation (Agrawal 
et al. 2019).

Different types of machine learning (e.g., neural networks and random forests) and adjusted 
multiple linear regression equations [e.g., model output statistics (MOS)] have been employed 
as tools to improve weather forecasts for decades (e.g., Glahn and Lowry 1972; Benjamin 
et al. 2019). In the past 20 years, however, research into AI has evolved from simple neural 
networks that are saturated in skill with relatively small amounts of training data to complex 
machine learning and deep learning applications. These machine learning applications are 
able to infer more complex relationships and continue gaining skill when given far greater 
amounts of training data (e.g., Ng 2018).

Other efforts to develop machine learning models have been increasing in the research 
sector (e.g., Roebber 2013; Herman and Schumacher 2018; McGovern et al. 2019). In the 
Global Synthetic Weather Radar (GSWR) project, the U.S. Air Force is employing AI and 
machine learning to fuse sensed data and output from the Air Force’s Global Air-Land Weather 
Exploitation Model (GALWEM; Stoffler 2017). Further advances include severe weather 
probabilities (ProbSevere; Cintineo et al. 2020) from the Multi-Radar/Multi-Sensor (MRMS) 
system (Smith et al. 2016). ProbSevere is a statistical model that uses the RAP model, GOES 
satellite data, and radar data to improve short-term probabilistic forecasting guidance 
in severe-weather situations (Fig. 2). Other efforts include the Warn-on-Forecast System 
(WoFS; Skinner et al. 2018), which consists of an ensemble of 36 individual members, and 
warning-scale probabilistic hazard information (PHI; Karstens et al. 2015). Experiments 
with WoFS, PHI, and other tools have been conducted at the Hazardous Weather Testbed 
(HWT; Clark et al. 2012; Calhoun et al. 2021), in which operational meteorologists evaluate 
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guidance and tools in development by using them during real-time and simulated severe 
weather events (Fig. 3).

Recent cross-sector collaboration efforts have provided new opportunities to accelerate NWP 
innovations. New models are being developed for operational meteorologists under the umbrella 
of the Unified Forecast System (UFS; Tallapragada 2020). The National Center for Atmospheric 
Research (NCAR) and IBM are collaborating on the Model for Prediction Across Scales 
(MPAS 2013), which uses a hexagonal mesh resembling a honeycomb that can be stretched 
wide in some regions and compressed for higher resolution in others. Additionally, initiatives 
are in development in which a shared cloud environment would facilitate experimentation and 
modification of NWP model code to improve the accuracy of the models (including the Earth 
Prediction Innovation Center; Jacobs 2021). Last, NOAA has unveiled an AI strategy (NOAA 
2020a) designed to increase development and use of AI across its varied mission areas.

After decades of employing larger-scale models with parameterized convection, operational 
meteorologists are increasingly using output from convection-allowing models (e.g., Roebber 
et al. 2004; Clark et al. 2016; Sobash et al. 2020). Such models include the deterministic HRRR 
(Alexander et al. 2020) and NAM (3-km horizontal grid spacing). Simulated reflectivity products 
generated from convection-allowing models closely resemble real-time radar imagery in many 
cases. Although they can often accurately depict the mode, timing, and placement of precipita-
tion features, the realistic representations can lull a forecaster into accepting it as fact, if the 
forecaster fails to maintain an appropriate level of critique. Additionally, the WoFS and the High 
Resolution Ensemble Forecast (HREF) systems produce ensemble products from several different 

Fig. 1.  The “Human Over the Loop” graphical user interface runs on Windows machines and is composed of a graphics work 
area showing some portion of Earth, GIS layers, and weather “underlays.” Forecasters draw polygons or clusters of polygons 
and then assign properties to those polygons that filter, qualify, or further amplify the underlying gridded forecasts. The 
forecaster instructions embodied in the polygonal objects are only applied when a forecast is requested from the API thus 
parallelizing the flow of forecast guidance and forecast intervention from the human (Fig. 2.1 from Rose et al. 2015).
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models with around 3-km horizontal grid spacing (Roberts et al. 2019). Automated output based 
on these high-resolution models, such as predicted neighborhood probabilities of updraft 
helicity, can help operational meteorologists mitigate the concern of forecasters accepting a 
single deterministic solution and gauge the risk of particular weather hazards.

The development and use of ensemble forecast systems have grown considerably over 
the last 25 years (e.g., Buizza 2018). However, most ensemble forecasts must be calibrated 
for their probabilities to be reliable. While run-to-run continuity and ensemble member 
agreement may inform forecaster confidence, a probabilistically reliable forecast system is 
key. Thankfully, the need for calibration is well understood and research into optimizing 
calibration techniques is becoming more commonplace (e.g., Duan et al. 2017; Voudouri et al. 
2017; Buizza 2018). But operational meteorologists still need to remain aware of the continued 
limitations of ensemble forecasts.

Regardless of the application, a basic understanding of these tools is required to gain op-
erational meteorologists’ confidence. They must also be able to recognize unrealistic output, 

Fig. 2.  Multi-Radar/Multi-Sensor (MRMS) system ProbSevere display with radar reflectivity 
overlay at 1945 UTC 7 Oct 2020 showing the probability of severe hail, wind, and tornadoes for a  
thunderstorm near the Capital Region of New York. Color contours represent the maximum 
probability for severe weather type in a radar-derived thunderstorm centroid. Note the 4% 
probability for hail, 65% probability for severe winds, and 34% probability for tornadoes. Other 
severe weather parameters are included such as maximum estimated hail size (MESH), vertically 
integrated liquid density, instability and shear parameters and lightning data. [Figure courtesy 
of the Cooperative Institute for Satellite Studies (CIMMS) at the Science and Space Engineering 
Center (SSEC) at the University of Wisconsin–Madison.]
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which may result from, for example, an extreme event that has little to no representation in 
the machine learning model’s training dataset. This recognition requires humans to maintain 
expert skills in mesoanalysis to conduct this quality control and identify “targets of opportunity” 
to improve upon model forecasts, most likely near- and short-term forecasts.

Automated tools that improve communication. Murphy (1993) stated that “Forecasts possess 
no intrinsic value. They acquire value through their ability to influence the decisions made 
by users of the forecasts.” In other words, the forecast itself cannot stand alone; it must be 
followed by the creation and presentation of understandable and actionable weather informa-
tion to customers, partners, and the public. Broadcast meteorologists, along with the weather 
companies that provide graphics support for broadcasters, have been leaders in developing 
technology and tools to facilitate and optimize weather communication. Methods of delivering 
forecasts and warnings to the end users are becoming increasingly automated, with applica-
tions for smart devices (e.g., phones, watches, Google Assistant, Amazon Alexa), social media, 
and streaming services growing in number. In one recent advance, The Weather Channel 
uses a suite of tools called Unreal Engine to create realistic visualizations, termed immersive 
mixed reality, which places weather anchors virtually within simulated weather hazards to 
help viewers better understand weather threats (Fig. 4) and their risks (Barrett 2018).

Other research is being conducted on improving the interpretation of severe-weather text 
and graphics on social media. Sutton and Fischer (2021) conducted a study in which they 
tracked the study group members’ eye movements on National Weather Service Twitter and 

Fig. 3.  Warn-on-Forecast System (WoFS) display of the ensemble 90th percentile of 2–5-km updraft helicity, with composite 
reflectivity paintballs > 40 dBZ and probability matched mean, initialized 0600 UTC 3 Mar 2020, valid 0700 UTC 3 Mar 2020. 
An EF3 tornado occurred in the Nashville, Tennessee, area. (Figure courtesy of the National Severe Storms Laboratory.)
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Facebook severe weather posts to determine level of interest and comprehension of severe 
weather information. This type of research is becoming increasingly important to determine 
how users view and interpret weather graphics and text, with the goal of helping operational 
forecasters create more effective messaging to improve users’ decision-making in the face of 
dangerous weather.

Convection-allowing models are also assisting operational meteorologists as a weather 
information communication tool. NWS forecast offices include simulated reflectivity and 
other products from convection-allowing models in briefings to partners and the public, as 
a way of showing the expected timing and pattern of precipitation. Broadcast meteorologists  
use model output similarly, including merging real-time radar information with this 
high-resolution model output to provide details on expected storm movement and behavior. 
Tools like these are used with geographic information system (GIS) maps to provide spatial 
detail and to help orient users and improve interpretation of weather information.

An AI-rooted communication tool, Probabilistic Winter Precipitation Forecast (PWPF), is 
helping the NWS convey winter-weather threats by combining deterministic and ensemble 
guidance to produce probabilities for snow and ice. After consulting additional sources of 
guidance such as empirical orthogonal functions (EOF) and ensemble cluster analyses (Zheng 
et al. 2019), operational meteorologists complete their deterministic forecasts of snow and 
ice accumulation. They use a set of tools that alter the probabilities of snow or ice, along 
with exceedance probabilities (e.g., Novak et al. 2014a; Waldstreicher et al. 2018). Maps and 
tables generated from this output include the probability of exceedance of various thresholds, 
as well as the 10th and 90th percentile accumulations (Fig. 5), which are given the titles of 
“expect at least this much” and “worst case scenario,” respectively. Providing these ranges 
helps communicate uncertainty and confidence to NWS partners, helping them with their 
decision-making and preparations. In the future, these forecasts are expected to include 
alternative scenarios and probabilities for different storm tracks.

Finally, to foster improved public safety and decision-making, it is crucial to provide weather 
information in multiple languages. A recent project at the National Hurricane Center is using 
machine learning algorithms to provide on-the-fly English-to-Spanish translations of NWS 
free-text products (M. Bozeman 2021, personal communication). One major challenge that 
the group has faced includes training the algorithm to interpret slight variations in language, 

Fig. 4.  Immersed mixed reality used by The Weather Channel. Meteorologist Chris Warren is 
showing how different depths of water can affect safety in vehicles and personal safety. (Figure 
courtesy of The Weather Company/Channel, available at www.youtube.com/watch?v=12nlTn4G5Xg.)
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despite numerous regional dialects of Spanish. Although clearly a time saver in the future, 
there is a tremendous amount of work to develop a satisfactory, robust, and accurate product. 
Thus, this project shows the importance of the human–machine mix in developing new tools 
for communicating forecasts in multiple languages due to the increasingly diverse popula-
tions in many communities around the world.

Training and proficiency for future forecasting
Training and talent development must change to meet the demands of an evolving forecast 
process. Current faculty are likely to be teaching content for which they have never received 
formal training. Students that entered universities in 2020 will complete their careers around 
2060—Is anyone capable of knowing what suite of skills will be needed this far in the future? 
Consequently, universities must deliver a balance of sufficiently specialized training in 
meteorology (or atmospheric, Earth, or geosciences, more generally) and a broader university 
education. Consider that the U.S. Government’s Meteorologist General Schedule 1340 
(GS-1340) requirements are 30 years old. These standards describe a homogeneous workforce 
(www.weather.gov/jetstream/careers) in the face of the need for diverse skills (Environment and 

Fig. 5.  Part of an impact decision support services briefing issued by the National Weather Service in Albany, New York, 
prior to the 1–3 Dec 2019 snowstorm. The 10th percentile, 90th percentile, and most likely scenarios are displayed with 
the disclaimer that snowfall forecasts will be updated as new information is available. (Figure courtesy of the National 
Weather Service in Albany, New York.)
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Climate Change Canada has similar outdated requirements). At some institutions, the GS-1340 
position description can approximate a kind of accreditation, but it can also be viewed as an 
overly rigid baseline of standards. The AMS standards for a bachelor’s degree in atmospheric 
science are similar (www.ametsoc.org/ams/index.cfm/about-ams/ams-statements/statements-of-the-
ams-in-force/bachelor-s-degree-in-atmospheric-science/), though they are more flexible and have 
been updated more recently. In contrast, other sectors of the government including the Air 
Force have recently revised their commissioned officer accession guidelines, adding physicists, 
mathematicians, and other geoscience specialties to the list of qualified applicants. Hence, 
NOAA/NWS should revise the standards offered by the NWS to promote greater flexibility and 
expansion of skills into the future workplace.

Another reason for flexibility in education is the expansion of the private sector in meteorol-
ogy. Because some academic meteorology programs have historically been oriented toward 
educating operational meteorologists, particularly for government service, universities should 
question whether their programs are fit for this new era. Some of the obstacles toward reinven-
tion of curricula include the amount of material and experiences that students need to possess 
versus the amount of availability in a typical undergraduate curriculum. Consequently, the 
idea of curricular tracks or concentrations has been implemented at some institutions, allow-
ing students to focus on particular topics or add courses focusing on related skills such as 
statistics or GIS. Extracurricular experiences that further broaden students, such as paid and  
unpaid internships, independent studies, work study programs (e.g., Roebber et al. 2010), 
and research experiences for undergraduates (e.g., Gonzalez-Espada and Zaras 2006; Burnett 
and LaDue 2011) can be valuable and should be made available to interested students.

It is incumbent on the public and private sectors to get more directly involved with universi-
ties, and vice versa, to make such opportunities available to students, who will be their future 
employees. But university education is more than just preparing a student for job placement; 
ideally, university education teaches students how to learn and think critically. The employer 
will also be required to deliver a certain amount of on-the-job training at various stages of 
their employment, perhaps as continuing professional development—another reason for 
employers and universities to be discussing how best to partition education and training. 
Below, we identify particular skills needed for students and operational meteorologists to 
succeed in the future atmospheric-science workforce.

1)	 Computing and data skills. Many curricula require at least one course in computing/
programming, but this may not provide students with sufficient skills to understand 
NWP, AI, and other techniques. Although the nature of programming has evolved from 
Fortran and C+ to higher-level languages such as Python and R, coding and other skills 
(e.g., web-page design, GIS) are needed by meteorologists to analyze, visualize, forecast, 
and communicate. For example, GIS courses and certificates are increasingly being 
sought by students in lieu of minors in more traditional disciplines such as mathemat-
ics, physics, or computer science. Specifically, GIS and other visualization skills can 
be valuable in graduate school, the NWS, television operations, self-employment, and 
private industry, as well as outside of meteorology.

2)	 Probability, statistics, and ensemble forecasting. Research reveals the advantages of a 
probabilistic approach to forecasting, with the use of ensemble forecasts being a key 
application (e.g., Murphy 1993; Fritsch et al. 1998). Students must have a foundational 
understanding of ensembles, including their construction, interpretation of output, the 
importance of probabilistic reliability, data-visualization techniques, and communication 
to an end user. Institutions are increasingly incorporating ensemble techniques and prod-
ucts within their synoptic meteorology curriculum and weather briefings. The foundation 
for ensemble techniques is rooted in probability and statistics, which can also carry over to 
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careers in other sectors of the weather, water, and climate enterprise and weather-adjacent 
fields (e.g., risk assessment, insurance/reinsurance, and finance).

3)	 Artificial intelligence. AI methods, as well as their subsets machine learning and deep learn-
ing (see the “Definitions” sidebar), can be viewed as leverage for a forecaster. One does 
not need an NWP model to make weather forecasts, but through its use, one can advance 
understanding and forecast skill. Similarly, postprocessing of NWP with AI methods can 
enhance those products (e.g., by revealing and correcting model biases). These methods 
can also be used as tools to quickly explore the sensitivity of a forecast to atmospheric 
parameter adjustments and their effects on a range of future atmospheric conditions. Even 
if students do not necessarily implement AI methods themselves, students need to know 
how they are built, what their strengths and weaknesses are, and ethical considerations 
when implementing and using AI methods (McGovern et al. 2022).

4)	 Decision support and communication skills. One of the most important value-added skills 
is the ability to communicate effectively with users of weather information. This skill set 
involves two interrelated concepts. The first is the ability to communicate in a variety of 
ways (e.g., oral, written, graphical) and within a range of personality types, audiences, 
and professional settings. The second is the understanding of how people, including  
operational meteorologists, make decisions. What kind of information is needed, and how 
do human thought processes work? Decision support may be the most important role that 
operational meteorologists of the future will undertake: taking the forecast product and 
crafting the best message to be delivered at the right time to prompt the desired response.  
Related topics of study include societal response to forecasts, psychology of decision-making 
and risk assessment, and the application of statistics/probability.

5)	 Research skills and interdisciplinarity. As models improve, operational meteorologists 
will need to understand when automated tools work well and when their output needs 
to be modified. To do this, some research skills will be beneficial (e.g., Steeneveld and 
Vilà-Guerau de Arellano 2019). Specifically, the research should start with the problem 
identification. Moreover, research should improve the value of forecasts, not just their 
quality. Such research will increasingly be interdisciplinary and multidisciplinary, and it 
may require functional knowledge of non-physical-science fields, including social science.

6)	 Effective group work. Collaboration will be required to tackle increasingly challenging and mul-
tidisciplinary problems. Diverse teams composed of individuals of varying perspectives and 
heuristic techniques often outperform teams of high-ability problem solvers (e.g., Hong and Page 
2004). Schools can conduct group exercises that require students to work together to produce 
an accurate and consistent forecast and/or message through consensus and working together 
through the scientific process. Students with expertise in physical science, social science,  
communications, GIS, and graphical design can all contribute to the forecast and communication  
process, reinforcing the importance of diverse teams in solving multidisciplinary problems.

7)	 Management of work–life balance with rotating or nonstandard hours. Although not a “skill” 
per se, operational meteorology can be a demanding job, sometimes much more than we 
acknowledge. Weather happens all the time, and providing 24-h support requires nonstan-
dard work hours, which can affect physical/mental health (Costa 2010) and decision-making 
abilities. Add in working from home (i.e., teleworking) as a more frequent and attractive 
option for some, and such constraints require a holistic perspective of both the employer to 
build a skilled and effective team and the employee to maintain work–life balance. Students 
considering such careers would benefit from job shadowing or internships to evaluate the 
demands of changing sleep patterns, work, physical/mental health, and social/family life.

The above set of skills should be considered in any revision to AMS guidelines and/or 
the GS-1340 position description. Atmospheric science students will graduate into a broad 

Unauthenticated | Downloaded 06/10/23 12:05 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y AU G U S T  2 0 2 2 E1733

range of potential career trajectories, so universities need to ensure student competitive-
ness in the short-term job market. In addition, operational meteorologists need continuing 
professional development and self-directed learning (e.g., LaDue and Cohen 2018) to keep 
abreast of new science and applications. Educators are encouraged to provide a solid base  
of fundamentals, along with enough breadth, to allow versatility. Thus, we make the  
following recommendations.

•	 The public sector, private sector, and professional organizations, such as the AMS and 
National Weather Association, work with universities to revisit curriculum requirements 
perhaps on a decadal or subdecadal interval.

•	 Students/operational meteorologists take the initiative to gain skills (and sharpen existing 
skills). Job shadowing, internships, mentoring, career fairs, professional conferences, and 
networking all help to prepare for diverse careers. Mentoring should be pursued. These 
activities must be facilitated by university programs in ways that maintain diversity.

•	 Students/operational meteorologists seek opportunities to distinguish themselves by 
pursuing their primary interests and skills at which they excel. Examples include double 
majors, advanced degrees, and developing leadership skills through volunteering, univer-
sity clubs, or other opportunities. Recognizing that this places additional financial burdens 
on students, resources must be provided.

•	 Students training to be operational meteorologists spend more time at university doing 
actual forecasting tasks, as well as training in positions outside of traditional forecasting 
routes, with some specializations. Future positions will likely be centered on high-impact 
weather, communication, and forecast tool/automated forecast development.

•	 Operational meteorologists engaging in ongoing training to improve themselves require 
verification and feedback. Individual feedback should be provided in a private, construc-
tive, nonjudgmental manner without professional repercussions. Aggregated, anonymous 
verification is also important for a forecast office. Verification can help determine 
where humans are adding value, where they are not, and how to add value, especially for 
high-impact events.

•	 Trainers, developers, and research-to-operations-to-research (R2O2R) personnel sit with 
operational meteorologists at the forecast desk, both for the development side to see what 
they need and how they can use new tools, but also to help them best use these new tools.

Students/operational meteorologists will have to take initiative and be creative with their 
education, self-directed learning, and continuing professional development. Correspondingly, 
universities and employers should help by developing and publicizing opportunities for all 
students—regardless of background, financial situation, or other circumstances—to tailor 
and expand their skill sets to be as prepared as possible for the continually evolving weather 
enterprise. However, universities and employers also hold some responsibility in making sure 
all students or operational meteorologists have these opportunities and should not assume 
that students who are not taking advantage of these opportunities lack initiative.

Envisioning the future of weather prediction and communication
In this section, we lay out our vision for the future of weather prediction and communication, 
focusing on the role of the operational meteorologists in the process. This vision is based on 
the webinars, panel discussions, and other in-person communications, as well as numerous 
advancements and developments in weather forecasting and information technology already 
discussed in the previous sections. We also extrapolate existing trends into the future, where 
possible. Our vision is organized into periods before the forecast, while making the forecast, 
communicating the forecast, and after the forecast.
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Before the forecast. Testbeds and proving grounds focused on operational forecasting 
environments will remain a vital part of our vision for the future. Testbeds allow for input 
into products by end users before the transition to operations (e.g., Sørensen and Torfing 
2011). NOAA operates several testbeds (NOAA 2020b) such as the Weather Prediction Center 
Hydrometeorology Testbed and the NWS Operations Proving Ground (OPG), which evaluate  
experimental guidance products for winter weather (www.wpc.ncep.noaa.gov/hmt/11th_ 
Annual_HMT_WWE_2021_Final_Report.pdf), severe weather (www.nssl.noaa.gov/news/factsheets/hwt.
pdf), and extreme precipitation (https://vlab.noaa.gov/documents/214451/5286029/CFP+%28QPF%
29+Virtual+Experiment+Report.pdf/0a42a6de-4254-c3df-ccf3-8cb9f7bd3583?t=1605800868969). 
Testbeds also allow operational meteorologists and researchers to evaluate products extracted 
from experimental sources of data and guidance to determine which of these derived fields 
might be helpful in operations. Examples of products that have come from these and other 
testbeds include WoFS, PHI, rapidly updating phased-array radar (Heinselman et al. 2015; 
Wilson et al. 2017a), convection-allowing models and ensembles (e.g., Gallo et al. 2017; 
Demuth et al. 2020), and flash-flood prediction products (e.g., Martinaitis et al. 2017; Yussouf 
et al. 2020). Experimental products are also evaluated in a field office environment, acting 
as a local or regional testbed with local and regional user groups and media. For example, 
probabilities for intense hourly snowfall (Fig. 6) could help predict impacts of snowfall rates 
on transportation interests, school superintendents, and other winter weather-sensitive user 
groups, products that may become operational in the future.

Another benefit of testbeds is that they bring various partners together to work on com-
mon problems, which is the essence of R2O2R. When partners are allowed to take part in 

Fig. 6.  High Resolution Ensemble Forecast (HREF) 20-h forecast probability for 1-h snowfall > 1 in. 
initialized 1200 UTC 19 Jan 2019 and valid 0800 UTC 20 Jan 2019. (Figure courtesy of the Storm 
Prediction Center.)
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the creation process, the likelihood of future adoption and use of a product both increase 
(e.g., Nygren et al. 2018). As a result of coproduction, the designs of many products continue 
to mature (e.g., Kuster et al. 2017; Calhoun et al. 2018; Meyer et al. 2019; Klockow-McClain 
et al. 2020; Obermeier et al. 2020). Similarly, managers and policy-makers should periodically 
shadow operational meteorologists in a field office or forecast floor, similar to operational 
meteorologists evaluating experimental guidance at testbeds. The policy-makers can then 
have direct experience and make more informed funding and policy decisions to improve the 
forecast and communication process.

More broadly, these adaptations and benefits will depend on a multisector interdependence 
in a R2O2R framework, including social-science fields such as human factors and communi-
cation. One illustration of that framework is the concept known as Forecasting a Continuum 
of Environmental Threats (FACETS; Rothfusz et al. 2018). FACETS emphasizes the need for 
social, behavioral, and economic sciences research in probabilistic hazardous-weather fore-
casting and is evident in recent research with NWS operational meteorologists, core partners, 
and the public during HWT experiments.

Ultimately, however, testbeds are about the forecast process and the operational meteorologist. 
Thus, testbeds should continue to consider the human side of operational meteorologists—the 
impact of the mental and physical workload of the operational environment on the human. 
Workload has already been examined in NOAA testbeds (Wilson et al. 2017a) and is projected 
to increase as new weather data and forecasting tools become available. Testbeds can consider 
approaches to mitigating potential workload impacts of new developments prior to their 
operational deployment, to help protect the future performance and well-being of operational 
meteorologists. Furthermore, experiences such as the Mesoanalyst Workshop at the NWS OPG 
(Runk et al. 2020) help to designate forecaster responsibilities as new analysis, prediction, 
and communication techniques force the forecast process to evolve. As a result, the impact of 
new forecast approaches on the current forecast process, particularly optimizing the balance 
between automation and human intervention in the prediction and communication process, 
can be assessed.

Such concerns go beyond time allocation, but also mental workload, which is the amount 
of attention resources required to meet a performance criterion. Mental workload is influenced 
by operational meteorologists’ task demands and their past experience. For example, in an 
experiment assessing operational meteorologists’ use of rapidly updating phased-array radar 
data, Wilson et al. (2017a) applied the Instantaneous Self-Assessment Tool to measure 
cognitive workload. In follow-up focus groups (Wilson et al. 2017b), these operational 
meteorologists were then able to suggest strategies to help minimize instances of cognitive 
overload (e.g., using algorithms to track trends in radar signatures, using more efficient 
visualization techniques, redistributing forecaster responsibilities within offices).

We also envision that testbeds could examine the composition of the forecast teams. 
Alternative staffing models could be proposed where high-impact weather events require a 
team of expert operational meteorologists with various strengths to sort through the multitude 
of forecast and warning information and present specific information that meets customers’ 
needs. For example, one forecaster might excel at mesoanalysis and verbal communication, 
whereas another might be better at radar and NWP model analysis and graphic production. 
These members could fill multiple critical roles within an effective warning, forecast, and 
communication team. Event-driven team building would seek to optimize the forecast, warning, 
and communications process for each event.

Finally, while end-user inclusion at the development and testing stages of future forecast 
tools is imperative, consideration of the needs of the public is equally important. The future 
forecast process will result in more publicly available probabilistic forecasts. Therefore, the 
extent of understandability and usability of these forecasts must be evaluated. Past studies 
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indicate that forecasts that include uncertainty may improve the decision-making of laypeople 
(e.g., Joslyn and LeClerc 2012), and multiple entities have recommended that future forecast 
products contain uncertainty (e.g., Rothfusz et al. 2018). In fact, the public prefers forecasts 
that include an expression of uncertainty over deterministic forecasts (e.g., Morss et al. 2008; 
Peachey et al. 2013; Demnitz and Joslyn 2020). Although numerical probabilities are a good 
starting point (Gulacsik 2019), new methods will likely be needed because even operational 
meteorologists have stated challenges interpreting probabilities and probabilistic guidance 
(Demuth et al. 2020). Simple changes in color-coding scheme, map display, layering, or type 
of information (e.g., qualitative versus quantitative) can have an impact on how the public 
may perceive, interpret, and use a forecast (e.g., Sherman-Morris et al. 2015; Miran et al. 2017; 
Klockow-McClain et al. 2019; Meyer et al. 2019).

Making the forecast. In the future, we still anticipate that a fundamental understanding of 
the atmosphere based on operational experience will continue to be needed by operational 
meteorologists, including the diagnostic expertise at applying past weather events to evaluate 
forecast guidance (e.g., Novak et al. 2008; Daipha 2012, 2015; Hoffman et al. 2017). 
Operational meteorologists’ abilities to recognize synoptic patterns will be needed to identify 
errors at all stages in the automation process (e.g., Bosart 2003), correct them, and adjust 
them based upon a variety of factors (e.g., input from calibrated probabilistic forecast systems, 
recognizing similar atmospheric conditions in past events). Such abilities are a significant 
benefit that humans can provide in the forecast process (e.g., Doswell 2004; Stuart et al. 2007; 
Hoffman and Fiore 2007; Novak et al. 2014b; Hoffman et al. 2017). For example, someone 
that uses conceptual models based on learning from past events could determine which solu-
tion, cluster of solutions, or probability distribution within an ensemble represents the most 
likely outcome or range of outcomes.

However, operational meteorologists will need to shift paradigms from a binary decision of 
warn–not-warn to a continuous flow of information (Rothfusz et al. 2018). Downstream severe 
weather threats are likely to be depicted as plumes of probabilities on spatial scales of less 
than 10 km and time scales of minutes (e.g., Fig. 8 of Karstens et al. 2018; Stumpf and Gerard 
2021), derived from convection-allowing models or ensembles. Operational meteorologists 
would still need to perform quality control on these predictions, because even convective  
allowing models improved by AI would still have errors due to subgrid convective processes in 
the atmosphere. Alerting and messaging would be determined by the changing probabilities 
at locations within the polygons and plumes, based on the motion and evolution of the thun-
derstorms. For example, people in a location in the path of a possible tornado could be made 
aware of thunderstorms upstream hours prior to impact, to encourage people to be prepared 
to take action should the thunderstorms become tornadic. Information on the location and 
severity of the threat would be updated frequently until the tornado is within 15–45 min of 
impact, when the probability threshold for a warning is met. The warning would consist of 
unique visual and/or audio alerts with specific graphical, audio or text information avail-
able on all media platforms. The continuous-flow-of-information paradigm is not confined 
to severe weather: A winter weather version is currently being tested in some regions of the 
National Weather Service (Graham et al. 2021).

Furthermore, we anticipate that advances in big-data analytics provide an opportunity 
for AI to provide meaningful feedback to the operational meteorologist on their decisions 
relative to the degree of uncertainty in a forecast problem. This “virtual assistant” would 
analyze tendencies relative to results and verification. AI could also provide quantitative 
feedback to an individual, researchers in human cognition, and forecast-process managers 
to guide improvement. AI systems will always contain errors, including some that a human 
would be unlikely to make (see the “Misconceptions about the human–computer relationship” 
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sidebar). In situations where an anticipated forecast event lies outside of the AI training 
dataset, human intervention may be required. Because of these issues of appropriate trust 
and reliance, forecaster–computer relations should improve as operational meteorologists 
learn the strengths and weaknesses of ever-improving AI systems. New data sources such as 
drones and unmanned autonomous vehicles will need to be quality controlled. Recognizing 
erroneous or anomalous data will continue to be an important step prior to and within the 
forecast process.

For example, variables contributing to a machine learning application can be listed along 
with the weights of each variable in different forecast scenarios. This is being done in some 
R2O settings already (K. Corbosiero and B. Filipiak 2021, personal communication). Operational 
meteorologists can learn what variables and weights contribute to the optimized forecasts, 
plus identify when observed atmospheric variables are outside of the machine learning 
database, to know when to deviate from the machine learning–based forecasts.

We envision that the private sector will continue to grow in number of employees and 
in importance to the global economy. They will continue to innovate, producing special-
ized forecast and warning information, including for the many industries that can be 
impacted by adverse weather. Although some private-sector groups are changing the role 
of humans in the forecast process (e.g., Rose et al. 2015), other private-sector groups are 
seeing demand for other applications of improved meteorological data outside the weather 
enterprise. Humans have a unique role in conveying and explaining weather threats and 
the sometimes-nuanced role that weather can play within industry operations. Weather 

Fig. 7.  Part of an impact decision support services briefing issued by the NWS in Norton/Boston, Massachusetts, explaining 
sources of uncertainty in a region where rain and sleet could significantly affect snow amounts prior to a major snow-
storm. (Figure courtesy of the National Weather Service in Boston, Massachusetts.)
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and climate predictions for commodities/derivatives, risk management (e.g., Brockett 
et al. 2005), and reinsurance (e.g., Murnane 2004) have expanded in recent years, and 
the human role in the application of weather information into weather-adjacent industries 
will continue to expand.

Communicating the forecast. In the future, we anticipate that communication of the forecasts 
will also change. On the forecast floor, operational meteorologists can add value to automated 
probabilistic output by explaining to users that this presents a range of reasonably possible 
solutions, along with the most likely forecast. Precipitation transition zones in the winter pro-
vide a particular challenge in communicating uncertainty. Figure 7 is from an impact-based 
decision support services briefing slide issued by the NWS Forecast Office in Norton/Boston, 
Massachusetts. This image shows the greatest uncertainty in snow totals by describing the 
potential for reduced snowfall amounts with rain and sleet due to the uncertain evolution of 
a precipitation transition zone.

Communication of the forecast must be done in a manner that can be easily understood 
and which spurs appropriate actions. Figure 8 shows a social media post describing a warning 
for a deadly heat wave in Southern California. Included is a map showing color-coded threat 
levels across the warning area, along with a description of what each color means and pro-
tective actions that should be taken. Social-science researchers have documented the varied 
ways in which people interpret presentations of weather information (e.g., Morss et al. 2008; 
Peachey et al. 2013; Sherman-Morris et al. 2015; Miran et al. 2017), and this necessitates that 
operational forecasters understand the varied needs of their customers and communicate in 
a clear and effective way. The NWS Evolve initiative focuses on the importance of connect-
ing weather information to decision-makers through impact-based decision support services 

Fig. 8.  An impact decision support services post to social media followers, issued by the National Weather Service in 
Los Angeles/Oxnard, California, on 5 Sep 2020 describing a deadly heat wave in Southern California with a graphical depiction 
of color-coded threat levels and recommended actions. (Figure courtesy of the National Weather Service in Los Angeles/
Oxnard, California.)
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(Uccellini and Ten Hoeve 2019), underscoring the need to tailor weather information and 
messaging to the needs of the users. Such forecast messaging must also be adapted to smart 
devices, social media, streaming services, virtual/immersed reality, and the ever-changing 
ways people receive the weather information, as use of these avenues for forecast informa-
tion continues to increase.

Innovations in virtual reality and immersed mixed reality (as demonstrated in Fig. 4) will 
increasingly aid in communicating weather risk and impacts (e.g., Crout 2019). These innova-
tions could become important public education tools, including virtual-reality video games 
to teach people how to prepare for various weather-related hazards by placing them in and 
around the virtual hazard (Bernhardt et al. 2019, 2020; Zhu and Li 2021).

The future forecast and communication process will also inform a greater range of decision 
makers. Currently, broadcast meteorologists communicate NWS forecasts and warnings, and 
they continue to be the leading source of tornado warning information for the public (Silva 
et al. 2018). Involving the end users in the process of developing new systems and procedures 
has been a cardinal rule in cognitive systems engineering for decades (e.g., Woods and 
Hollnagel 2006). Similarly, research activities within the HWT and NWS OPG need to involve 
NWS core partners, emergency managers, and broadcast meteorologists (Nemunaitis-Berry et al. 
2020) in the development and testing cycles of future forecast tools and products (e.g., Fig. 9).

After the forecast. Even after the forecast is made, we anticipate changes in the future. 
Forecaster performance (e.g., decision accuracy, lead time) will be routinely evaluated using a 
sophisticated verification system. Performance could be measured in a controlled situation, 
such as a testbed that uses 360 feedback. For example, Karstens et al. (2018) showed how 
forecaster feedback during probabilistic hazard information experiments can be incorporated 
to improve the presentation and reliability of severe weather automated probabilistic guidance, 

Fig. 9.  Broadcast meteorologist Katy Morgan at the Hazardous Weather Testbed evaluating experimental methods of 
broadcasting severe weather probabilities in a continuous flow of information. [Figure courtesy of the National Severe 
Storms Laboratory Probabilistic Hazards Information (PHI) Project.]
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thus resulting in increased acceptance and use of the new tool. Providing information about 
how the experimental automated guidance has been developed can help ensure the success 
of automation use within the future forecast process.

Furthermore, these new forecast and warning paradigms will require new and creative 
methods of verification. Cost/benefit analyses and verification can illuminate areas where 
humans are adding value. More analysis of the value humans add to deterministic and 
probabilistic forecast products is needed and can inform budgets in all sectors. Verification 
will also determine where operational meteorologists’ efforts need to be directed to improve 
the forecasting process. The Model Evaluation Tools (MET) package developed by NCAR is 
an object-oriented verification program to evaluate forecast model and grid-to-grid verifica-
tion (e.g., Clark et al. 2014; Brown et al. 2021). Usage of MET is expanding and could become 
the standard verification method in the NWS, as well as in other sectors of the enterprise. 
Some local NWS offices are performing internal verification of predictions of specific weather 
phenomena in a GIS environment. For example, Fig. 10 shows a GIS graphical display of 
the difference in snow predictions and observed snowfall over the NWS Albany, New York, 
forecast area during 1–3 December 2019. This GIS analysis calculates the difference between 
gridded snowfall forecasts at a 2.5-km grid spacing and observed snowfall. Observed snow-
fall determined by the National Operational Hydrologic Remote Sensing System (NOHRSC) 
is supplemented by snowfall values received from observers, and inverse distance-weighting 
interpolation is used. These types of analyses provide verification information that can be used 
as input into research to improve future predictions and to determine whether the forecasts 
addressed the most important impacts from an event.

Fig. 10.  GIS analysis of the difference between forecasted snowfall in the National Weather 
Service National Digital Forecast Database and observed in the NWS Albany, New York, forecast 
area initialized at 1200 UTC 30 Nov 2019 and valid 1200 UTC 3 Dec 2019. (Figure courtesy of The 
National Weather Service in Albany, New York.)
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To summarize, we have laid out our vision of the future forecasting enterprise, showing 
that humans will maintain an essential role in weather prediction and communication. 
Although this paper presents a snapshot of how the human role in forecasts and warnings is 
changing and where it is likely to go, how this vision evolves will require regular reevaluation, 
requiring input and collaboration from across the weather, water, and climate enterprise and 
beyond. R2O2R must be embraced by all sectors of the enterprise, and “stove-piping” (i.e., 
where research is conducted in relative isolation with limited consideration or coordination 
with parallel efforts) must be eliminated (e.g., McNeeley et al. 2012). Our enterprise must 
seek out experts in the physical, social, and cognitive sciences for every research initiative, 
coordinating and collaborating in a shared environment.

In fact, the greatest future advancements assisted by AI technology may be through col-
laborations with weather-adjacent or weather-dependent industries. Creative and futuristic 
visionaries could develop algorithms that will automatically order more winter sleds for a 
hardware store based on a cold and wet 2-week outlook. Perhaps a smart device will assess 
the forecast and automatically select your clothes for the day. Streaming services may be 
fully equipped to communicate weather alerts for the viewer’s area. Roadside salt spreaders 
might automatically activate at the first forecast of wintry weather. Ethics, of course, must be 
considered as new technologies are employed to produce new products and services.

Conclusions
Weather forecasts are not perfect, and the weather, water, and climate enterprise has been 
tremendously successful at demonstrating consistent improvement in forecasts for many years. 
From empirical approaches in the first half of the twentieth century to numerical weather 
prediction models, satellites, radar, workstations, nowcasting, ensembles, data assimilation, 
and rapid updating models, advances in meteorology have been intricately entwined with 
technology harnessed for overwhelmingly positive benefit. Yet experts keep stating the mis-
conception that technology will result in increased automation, displacing human workers, 
overdependence on technology, unintended consequences of the technology, and the threat 
of losing control of that technology (see the “Misconceptions about the human–computer 
relationship” sidebar). Furthermore, there is the misuse, misunderstanding, and mistrust of 
AI technology and automation (Hoffman 2017).

However, technology and automation has guided humans to construct the forecast pro-
cess, reconstructed it anew, and continue to be integral in the forecast process. Throughout 
each advance and with each new step of increasing levels of automation and sophistication, 
humans still remain better than the machines in many tasks. Increased automation need not 
be the final stage of “meteorological cancer” of which Snellman (1977) warned. Maybe in the 
45 years since Snellman’s (1977) longing for the ideal human–machine mix, have we finally 
arrived at the era of “meteorological transformation” we have sought? Operational meteorolo-
gists can give up tedious tasks that can be automated and take on more challenging tasks 
that computers cannot do, such as communication and interpretation of automated products. 
In turn, operational meteorologists learn new skills and new hires bring new skills, as both 
adapt to the evolving forecast system and evolve the forecast system. Those whose careers 
will span the next few years and decades should not bemoan the situation, but embrace  
automation as a partner, develop lifelong learning to maximize one’s marketability, and drive 
forward one’s career path.
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