
Upscale versus “Up-Amplitude” Growth of Forecast-Error Spectra

RICHARD ROTUNNO ,a CHRIS SNYDER,a AND FALKO JUDTa

a National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 23 March 2022, in final form 7 September 2022)

ABSTRACT: Atmospheric predictability is measured by the average difference (or “error”) within an ensemble of
forecasts starting from slightly different initial conditions. The spatial scale of the error field is a fundamental quantity; for
meteorological applications, the error field typically varies with latitude and longitude and so requires a two-dimensional
(2D) spectral analysis. Statistical predictability theory is based on the theory of homogeneous, isotropic turbulence, in
which spectra are circularly symmetric in 2D wavenumber space. One takes advantage of this circular symmetry to reduce
2D spectra to one-dimensional (1D) spectra by integrating around a circle in wavenumber polar coordinates. In recent
studies it has become common to reduce 2D error spectra to 1D by computing spectra in the zonal direction and then
averaging the results over latitude. It is shown here that such 1D error spectra are generically fairly constant across the
low wavenumbers as the amplitude of an error spectrum grows with time and therefore the error spectrum is said grow
“up-amplitude.” In contrast computing 1D error spectra in a manner consistent with statistical predictability theory gives
spectra that are peaked at intermediate wavenumbers. In certain cases, this peak wavenumber is decreasing with time
as the error at that wavenumber increases and therefore the error spectrum is said to grow “upscale.” We show through
theory, simple examples, and global predictability experiments that comparisons of model error spectra with the predic-
tions of statistical predictability theory are only justified when using a theory-consistent method to transform a 2D error
field to a 1D spectrum.
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1. Introduction

A basic metric for estimating atmospheric predictability is
the average difference (or “error”) within an ensemble of
forecasts starting from slightly different initial conditions. It is
often useful to estimate the spatial scale of the error field and
spectral analysis is the natural tool to do so. For meteorologi-
cal applications, the error field of interest will vary with lati-
tude and longitude (x, y), which requires a two-dimensional
(2D) spectral analysis in wavenumbers (k, l). Statistical pre-
dictability theory (Lesieur 2008, chapter 11) is based on the
theory of homogeneous, isotropic turbulence, in which spectra
are circularly symmetric in k–l space. Statistical predictability
theory takes advantage of this circular symmetry to reduce
two-dimensional spectra in k–l space to one-dimensional (1D)
spectra in the polar coordinates (k,u)5 ( ����������

k2 1 l2
√

, tan21l/k
)
in

which the spectra are independent of u. In recent studies it
has become common in meteorological analyses to reduce 2D
error spectra to 1D error spectra by computing spectra in the
x direction and then averaging the results over y. The objec-
tive of this paper is to show that the latter procedure produces
1D error spectra that, except for power-law spectra, fail to
capture important aspects of statistical predictability theory.

Statistical predictability theory began with Lorenz (1969) in
which the predictability problem was formulated in terms of
the growth of small initial differences in a statistically station-
ary, homogeneous, isotropic turbulent flow; studies followed
using more sophisticated turbulence models (Lesieur 2008,
chapter 11). These studies find that the growth of the peak

scale and amplitude of an error energy spectrum depends on
the energy spectrum of the assumed background turbulent
flow. For a background turbulent flow with the power-law
spectrum k2b, the time scale for the error-spectrum evolution,
including the increase of the peak scale k21

peak and amplitude,
is inversely proportional to kpeak for b 5 5/3 and constant
when b 5 3 (Lesieur 2008, 412–413). For the “25/3” case the
inverse dependence of error-scale and amplitude growth rate
on scale implies limited predictability since confining an initial
error to ever smaller scales implies ever faster error growth
rates. For the “23” case, the peak scale of error energy is de-
termined by the peak scale in the background energy spec-
trum; confining the initial error to ever smaller scales refines
the initial condition without introducing faster error growth
implying unlimited intrinsic predictability. Note that in both the
3D and 2D cases, the theoretical error spectra for k , kpeak
have fixed slopes (k4 in 3D and k3 in 2D) and therefore
grow along with the error amplitude at kpeak (Lesieur 2008,
Figs. 11.2–11.3). Thus, the error spectra for k , kpeak could
be described as growing “up-amplitude,” but the emphasis
on this feature would be misplaced since it is the growth of
the peak-error scale and amplitude that characterize the
evolution of the theoretical error energy spectrum. The de-
termination of the peak scale k21

peak through spectral analysis
in a manner consistent with statistical predictability theory
is the issue addressed in the following.

To economize the writing, the reduction of a spectrum
from 2D to 1D by integrating in u in polar coordinates in
wavenumber space is termed a 1Dk spectrum while the reduc-
tion of a spectrum from 2D to 1D by transforming in x (which
gives the transform as a function of wavenumber k and y) and
then averaging over y is termed a 1Dk spectrum. The errorCorresponding author: Richard Rotunno, rotunno@ucar.edu
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spectra at a particular wavenumber is said to be “saturated”
when it reaches the level of the background energy spectrum.

Figure 5 of Mapes et al. (2008) compares the theoretical
1Dk error spectra of Rotunno and Snyder (2008) to the 1Dk
error spectra at the equator1 from a high-resolution global
meteorological model (their Fig. 5c). The 1Dk error spectra
are observed “… to fill up the saturation spectrum vertically
(up-amplitude) rather than horizontally (upscale). Large
scales grow just as rapidly as small scales, and they do so be-
fore small scales saturate.” In other words, the analyzed 1Dk
error spectra are essentially constant from k5 0 to ksat, where
ksat is the wavenumber at which the 1Dk error spectra equal
the background energy spectrum. As the error spectra grow
with time t, they preserve the “flat-line” shape from k 5 0 to
ksat(t) which decreases with t, and so growth of the error spectra
is said to be “up-amplitude.” In contrast, the theoretical 1Dk

error spectra increase with k from k 5 0 to a peak at ksat(t) in
the case of a “25/3” background energy spectrum. Since the
peak wavenumber decreases with t, the growth of the 1Dk error
spectra is said to be upscale. Further discussion of the case with
a “23” background spectrum is given in section 4.

Durran et al. (2013) compute 1Dk (including ensemble av-
eraging) error spectra in a case study of predictability using a
limited-area forecast model. Similar to the conclusion in
Mapes et al. (2008), Durran et al. (2013, Abstract) find, “There
is no evidence of small-scale perturbations developing rapidly
and transferring their influence upscale. Instead, the large-
scale perturbations appear to grow more rapidly during the
first 12 h than those at the smallest resolved scales.” The same
conclusion is reached in Weyn and Durran (2017, Abstract) in
the context of a simulation of an idealized mesoscale convec-
tive system: “Both small- and large-scale errors grow primarily
up in amplitude at all scales rather than through an upscale
cascade between adjacent scales.” Most recently, Lloveras
et al. (2021), in the context of numerical simulations of ideal-
ized baroclinic waves with moist convection, note w.r.t their

Fig. 16 the difference in the shapes of the low-wavenumber
parts of the 1Dk (constant with k) and 1Dk (increasing with k)
error spectra but conclude: “Nevertheless, the error growth us-
ing both computational methods is primarily up-amplitude,
with relative errors growing at approximately the same rate at
all scales, rather than through an upscale cascade.”

In the present paper, we show that 1Dk and 1Dk error
spectra are generally not the same and, moreover, they differ
systematically over the low wavenumbers. Statistical predict-
ability theory has 1Dk error spectra increasing with k up to
kpeak for both “25/3” and “23” background spectra (Lesieur
2008, chapter 11), where the subscript “peak” signifies the
wavenumber at which the error spectrum is a maximum. Here
we show that an error field with a circularly symmetric 2D
error spectrum has a 1Dk spectrum that increases with k up
to kpeak at the low wavenumbers, while the 1Dk spectrum
computed from the same error field is constant-with-k up to
kpeak.

In section 2, the analytical/computational methods are de-
veloped for comparing 1Dk and 1Dk spectra. Simple exam-
ples based on arbitrary homogeneous, isotropic random
functions are discussed in section 3. The relevance of these
examples to analyses of error spectra in a high-resolution
global model (Judt 2018, 2020) is discussed in section 4. Sug-
gestions are made in section 5 for how to compute local 1Dk

error spectra, which is of interest when the error fields are
spatially inhomogeneous as in most realistic applications.
Conclusions are summarized in section 6.

2. Discrete Fourier analysis

The analysis here is similar to that of Durran et al. (2017)
but with emphasis on the relation between 1Dk and 1Dk
error spectra.

The two-dimensional (2D) finite FT of the discrete function
f(xn, ym)(5fn,m) is

Fk,l 5 +
Nx

n51
+
Ny

m51
fn,m exp 22pi

(k 2 1)(n 2 1)
Nx

1
(l 2 1)(m 2 1)

Ny

[ ]{ }
; 1#k#Nx, 1# l#Ny, (1)

with inverse

fn,m 5
1

NxNy

+
Nx

k51
+
Ny

l51
Fk,l exp 2pi

(k 2 1)(n 2 1)
Nx

1
(l 2 1)(m 2 1)

Ny

[ ]{ }
; 1#n#Nx, 1#m#Ny: (2)

The “energy”

E 5 +
Nx

n51
+
Ny

m51
( fn,m)2 5

1
NxNy

+
Nx

k51
+
Ny

l51
|Fk,l|2 (3)

by Parseval’s theorem; the energy spectral density or “power
spectrum” is |Fk,l|

2(NxNy)
21.

The one-dimensional (1D) finite FT of f(xn, ym) in x is

F1D
k,m 5 +

Nx

n51
fn,m exp 22pi

(k 2 1)(n 2 1)
Nx

[ ]{ }
; 1#k#Nx, (4)1 The grid cell at the equator represents an average over

latitude.
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with inverse

fn,m 5
1
Nx

+
Nx

k51
F1D
k,mexp 2pi

(k 2 1)(n 2 1)
Nx

[ ]{ }
; 1#n#Nx: (5)

The energy

E1D
m 5 +

Nx

n51
(fn,m)2 5

1
Nx

+
Nx

k51
|F1D

k,m|2 (6)

by Parseval’s theorem; the ym-dependent power spectrum is
|F1D

k,m|2N21
x . The average of E1D

m over ym is

E1D 5
1
Ny

+
Nx

n51
+
Ny

m51
(fn,m)2 5

1
NxNy

+
Nx

k51
+
Ny

m51
|F1D

k,m|2: (7)

The 2D power spectrum, |Fk,l|
2(NxNy)

21, can be directly
compared to the 1D power spectrum in the x direction,
|F1D

k,m|2N21
x as follows. Consider F1D

k,m as a function of ym and

note that its 1D finite Fourier transform in ym is Fk,l. Using
Parseval’s theorem in the ym direction then gives

+
Ny

m51
|F1D

k,m|2 5
1
Ny

+
Ny

l51
|Fk,l |2,

which, upon division by NxNy, gives

1
Ny

+
Ny

m51
|F1D

k,m|2N21
x 5

1
Ny

+
Ny

l51
|Fk,l|2(NxNy)21, (8)

which says that the ym-averaged-1D power spectrum is equal
to the l-averaged 2D power spectrum.

The discrete 2D spectrum |Fk,l|
2 is typically reduced to a 1D

spectrum by summation within discrete annuli in wavenumber
space (Errico 1985). For the purposes of the following demon-
stration, we take Nx 5 Ny 5 N and let (k′, l′) 5 (k 2 1, l 2 1)
for k# N/2, l # N/2, and (k′, l′)5 (2N 2 11 k,2N2 11 l)
for k $ N/2 1 1, l $ N/2 1 1, so that k′ 5 l′ 5 0 defines the

FIG. 1. (a) Random function fn,m 5 f(xn, ym),
(b) its 2D power spectrum |Fk′ ,l′ |2/N2, and
(c) the reduction of the 2D power spectrum to
1D through S(k) in (9) and through S1D(k′) in
(11). The real random function fn,m is generated
following the procedure outlined in the appendix
for the Gaussian distribution in (15).
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origin. Thus, the 2D power spectrum in (3) reduced to 1D is
defined by

S(k) 5 1
N2 +|Fk′ ,l′ |2,

k#
������������
k′2 1 l′2

√
, k 1 1 (9)

for 0# k # N/22 1.
Equations (3) and (7) indicate NyE

1D 5 E and that therefore
the ym-averaged-1D power spectrum compatible with (9) is

S1D(k) 5 +
Ny

m51
|F1D

k,m|2N21
x , (10)

for 1 # k # N. Substituting k′ for k and letting Nx 5 Ny 5 N
gives

S1D(k′) 5 ak′ +
N

m51
|F1D

k′ ,m|2 N21, (11)

for 2N/2 # k′ # N/2 2 1. The factor ak′ 5 1 for |k′| 5 0 or
N/2 and ak′ 5 2 for 0 , |k′| , N/2, which reflects the symme-
try of |F1D

k′ ,m|2 about k′ 5 0.

3. Comparison of 1Dk and 1Dk

a. Simple examples

Consider the real, random function fn,m on a square
grid shown in Fig. 1a (see the appendix). Its power spec-

trum |Fk′ ,l′ |2/N2 is shown in Fig. 1b. The power spectra S(k)

and S1D(k′) are shown in Fig. 1c. One observes that
S1D(k′) is nearly independent of k′ for k′ , k′peak. The rea-

son for this is clear in light of (8). Substitution of (8) into
(10) gives

S1D(k) 5 +
Ny

l51
|Fk,l|2(NxNy)21, (12)

or in terms of (k′, l′) and for Nx 5 Ny 5 N,

FIG. 2. As in Fig. 1, but for the power spectrum in (A2).
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S1D(k′) 5 ak′ +
N/221

l′2N/2
|Fk′ ,l′ |2(N)22, (13)

for 0# |k′| # N/2. The flat-line shape of S1D(k′) for k′ , k′peak
is a result of the summation over l′ of the nearly circularly
symmetric |Fk′ ,l′ |2/N2.

In a second example, consider the random function fn,m
shown in Fig. 2a with the logarithm of the power spectrum
shown in Fig. 2b. In this case the power spectrum follows a
power law (“25/3” in this example). In the appendix, the
power spectral density for a power law can be obtained from
(A2) as F̃ F̃ * 5A2k(a21) with S(k)5 2pkF̃ F̃ * 5 2pA2ka.
In continuous form the rhs of (8) implies S1D(k)5
(1/2a)
a

2a
F̃ ˜̃F*dl5 (1/2a)
a

2a
A2(k2 1 l2)(a21)/2dl; letting x 5 l/k,

the integral reduces to ka(A2/2a)
x1
2x1

(11 x2)(a21)/2dx where

the latter integral is just a numerical factor. Thus, for a power
law, both S(k) and S1D(k) have the same power-law depen-
dence. In terms of the discussion in the previous paragraph, in
the power-law case k′peak 5 0.

b. Discussion

1) All calculations of error spectra based on statistical predict-
ability theory treat fields such as that as shown in Fig. 1a
with spectral densities that are exactly circularly symmetric
(due to ensemble averaging, which is not done in our ex-
amples). Hence any comparison of meteorological-model
error spectra with statistical predictability theory must be
done with 2D spectral densities reduced to 1D spectra, as
described in Errico (1985) and done here with the defini-
tion of S(k) in (9).

2) Reducing a nearly circularly symmetric 2D spectrum to
1D using the y-averaged Fourier transforms in x [here
defined as S1D(k′)] leads to spectra like that in Fig. 1c
in which the shape of the spectrum is independent of k′

for k′ , k′peak. A power-law spectrum is the exception
since k′peak 5 0 (Fig. 2c).

3) Consider the following hypothetical case of upscale error
growth from statistical predictability theory: Using (15)
with f 5 0 generates a circularly symmetric 2D spec-
trum; letting the error amplitude A(t) increase as k′peak(t)
decreases with time produces the S(k, t) and S1D(k′, t)
shown in Fig. 3. The same data analyzed through
S1D(k′, t) give the impression that the growth in time of
the error spectra is “up-amplitude” rather than upscale
since S1D(k′) is constant across scales for k′ , k′peak(t).

4. Relevance of statistical predictability theory to
atmospheric predictability

Using a high-resolution global model, Judt (2018) per-
formed “identical-twin” type experiments in a case study of a
specific 3-week period. The study showed that, initially, error
growth was tied to moist convection and therefore highly local-
ized, followed by a phase during which the error grew in scale,
magnitude, and spatial extent. At approximately 2–3 weeks into

the forecasts, the divergence of forecasts that had started from
small differences in the initial conditions had led to errors as
large as any sample drawn from a climatological distribution
(i.e., predictability was lost).

Analysis of the growing error spectra (his Fig. 13) using
spherical harmonics showed a good qualitative correspon-
dence to statistical predictability theory. More specifically,
at the earliest times, the error growth rate was maximum at
the smallest resolved scales, producing spectra that peaked
at those scales and fell off toward low wavenumbers
(Fig. 4a). After a few hours, the peak of the error spectra
began shifting toward larger scales (i.e., up-scale growth;
see crosses in Fig. 4a) while the rate of growth decreased.
Overall, this behavior is expected for a “25/3” background
spectrum. The characteristics of error growth changed
qualitatively after the peak of the error spectra had propa-
gated through the mesoscales. Between day 5 and 10, the
error spectra grew at a constant rate while peaking at
the scale of the energy-containing eddies (;4000 km wave-
length), as is expected for a “23” background spectrum
(Fig. 4b).

In an attempt to isolate error spectra over finite bands of
latitude, Judt (2020) subjected the error fields to zonal Fourier
transforms averaged over latitude. The resulting error spectra
(his Fig. 5) are quite unlike the error spectra obtained via
spherical harmonics and exhibit the “flat-line” shape for low
wavenumbers. One of the motivations for the present paper
was to understand how such different spectral shapes could
be produced by the same physical-space error field. Motivated
by the simple examples comparing S(k)and S1D(k′), we pro-
duced the spectral analysis in Fig. 4, with Figs. 4a and 4b the

FIG. 3. As in Fig. 1c, but for three Gaussian spectra generated
with (15) using f 5 0 and kw 5 20 with (A, kc) 5 (0.5, 80),
(1.0, 40), and (2.0, 80).
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same as Figs. 13a and 13b of Judt (2018). The new analysis in
Figs. 4c and 4d shows the latitudinal average of the zonal Fou-
rier transforms from 608S to 608N. In both the “25/3” and the
“23” cases, the error spectra in Figs. 4c and 4d show flat-line
behavior over the low wavenumbers, similar to the simple ex-
amples. The close qualitative correspondence of the different
reductions of 2D to 1D error spectra between the global
model and the simple examples above is, we believe, good
prima facie evidence that the 2D global-model error spectra
have at least a qualitative similarity to the circularly symmet-
ric 2D error spectra of statistical predictability theory.

Discussion

1) The growth of the error spectra for 2D turbulence (Lesieur
2008, chapter 11) could be described as “up-amplitude,” ex-
cept that it is peaked at the energy-containing scales of the

mean flow. We note that this behavior is based on a model
of isotropic homogeneous 2D turbulence; in contrast, explan-
ations of “up-amplitude” growth of error in the literature
(e.g., Durran et al. 2013, p. 1482) are based on the inhomoge-
neous nature of turbulence in meteorological models.

2) The time evolution of the error spectra in Figs. 4a and 4b
starts from the early stage upscale growth characteristic of a
“25/3” background spectra (Fig. 4a) to the later stage of self-
similar growth with peak at the scale of the energy-containing
eddies characteristic of a “23” background spectra (Fig. 4b).
As shown in Figs. 4c and 4d analysis using 1Dk-type error
spectra produces a flat-line low-wavenumber spectrum in ei-
ther case, thus significantly reducing the distinction between
the two regimes.

3) A qualitative difference relative to statistical predictability
theory is that upscale error evolution begins before the
error spectrum is saturated at any scale, whereas in theory,

FIG. 4. Spectral error growth in the predictability experiment of Judt (2018). The evolution of the 250 hPa error
kinetic energy spectra (a) between 1 and 12 h and (b) between 5 and 10 days as computed via spherical harmonics
[same as Figs. 13a,b in Judt (2018)]. (c),(d) The corresponding spectra computed via Fourier transforms in longitude
and averaged over latitude (608S–608N). The background spectra (black) are multiplied by 2. Crosses in (a) and
(b) mark the peaks of the error spectra.
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the upscale evolution begins only once the spectrum is satu-
rated at some scales. We hypothesize that this is a manifes-
tation of the inhomogeneity of real atmospheric flows. The
fastest error growth is extremely localized in space}
confined to regions of deep convection in simulations of
O(1) km resolution like that shown in Fig. 4, as first empha-
sized by Zhang et al. (2003). Nonlinear effects, including
the slowing of error growth and upscale error evolution,
will then also be spatially localized and can occur before
any scale in the error spectrum is saturated.

5. “Local” spectra for inhomogeneous fields

Real atmospheric flows are not globally homogeneous and
isotropic, which leads directly to considering predictability in
specific subdomains of the globe, such as latitude bands or re-
gions. One might hope that the tools of statistical predictability
theory, which rest on assumptions of homogeneity and isotropy,

could still be applied on subdomains where those assumptions
are more closely met.

This raises the question of how to evaluate the scale and
other spectral characteristics of perturbations on a given
subdomain. Indeed, it at least partly motivates the use
of 1Dk spectra, for example by separating the tropics,
midlatitudes and polar regions as in Judt (2020). If 1Dk
spectra are not particularly well suited to predictability
studies, as we argue here, then how should we perform
spectral analysis of perturbations for limited subdomains of
the globe?

Before proposing an answer, we consider first an inhomo-
geneous generalization of the example from section 3a and
Fig. 1. Let f sm,n and f lm:nl be “small-scale” and “large-scale”
fields, whose Fourier transforms are given by (A1) with
(A, kc) 5 (1, 40) or (1, 10), respectively. The field we will con-
sider is a composite, with statistics like f sn,m and thus small
scale in the southern part of the domain, and like f ln,m and

FIG. 5. As in Fig. 1, but for the composite field fn,m
given by (14). Gray lines in (c) show 1Dk spectra for
f lm,n and f sm,n.
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thus larger scale in the northern part of the domain. The field
fn,m has the following explicit form:

fn,m 5 amf
s
n,m 1 (1 2 am)f ln,m: (14)

The weighting function am is given by

am 5
1
2

1 1
��������
1 1 e

√
sinym���������������

sin2ym 1 e
√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
and is approximately 1 in the southern half of the domain
(ym ’ p/2) and zero in the north (ym ’ 3p/2), with a transi-
tion whose width is controlled by e. We take e 5 0.2, which
gives fn,m shown in Fig. 5a.

The 2D and 1Dk spectra for the composite field appear in
Figs. 5b and 5c, respectively. With different scales in the two
halves of the domain, the 1Dk spectrum lacks the annular
structure seen in Fig. 1b. The 1Dk spectrum (solid line) is a

melding of the spectra from f ln,m and f sn,m (which are shown as
thick gray lines in Fig. 5c): at large wavelengths the spectrum
follows that of f ln,m, and at small wavelengths that of f sn,m. As
expected, the 1Dk spectrum shown in Fig. 5c is flat at large
scales, unlike the 1Dk spectra for any of fm,n, f ln,m, or f

s
n,m.

We seek an analysis technique that will correctly identify
local spectra and dominant scales of the composite field. The
simplest approach is to multiply the original global field by a
spatially localized window function that is confined to the
local region of interest, and then compute the 1Dk spectrum
of the resulting windowed, global field. Wong and Skamarock
(2016) apply this technique to remove boundary effects
when computing spectra for limited-area models, and similar ap-
proaches can be found in other fields of geophysics (Wieczorek
and Simons 2005).

Figure 6 illustrates this approach applied to the composite
fm,n. The windowed field wm,nfm,n is shown in Fig. 6a for the
window function:

FIG. 6. As in Fig. 5, but for the windowed field
wn,mfn,m. The gray line in (c) shows only the spectrum
for f sm,n.
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wm,n 5
sin2yn if yn , p,

0 if yn $p:

⎧⎪⎪⎨⎪⎪⎩
This function, usually written in terms of a cosine with twice
the frequency, is known as the Hann window (Press et al.
2007, section 13.4), but we have explored other choices and
any reasonable window with a spatial scale that is broad com-
pared to the scale of f sm,n gives qualitatively similar results
(not shown). Taking the 2D FFT of wm,n fm,n and then form-
ing the 1Dk spectrum yields the results in Figs. 6b and 6c.
The 1Dk spectrum of the windowed field accurately repro-
duces that of the small-scale field f sm,n that dominates the be-
havior of the global field in the southern half of the domain,
except for an overall shift in amplitude. For fields whose
variance is locally spatially homogeneous, that shift can be
removed by normalizing the spectrum of the windowed field
by N2/+m,nw

2
m,n, thus accounting for the point-wise reduc-

tion of amplitude of the windowed field.
For a “real-world” example of windowing, we applied the

Hann window with bounds from 108S to 108N to the high-
resolution simulation of Judt (2018) (Fig. 7). As expected from
the examples in section 3, this method yields a slope for the back-
ground spectrum that is very close to that seen in 1Dk spectra
computed over 108S–108N [Fig. 5a in Judt (2020)]. This window-
ing method also captures the upscale evolution of the error in the
tropics, with a decrease of the peak wavenumber for the 1Dk

spectra similar to that seen in the global 1Dk error spectra in
Fig. 4. In contrast, the 1Dk spectra for the errors [also displayed
in Fig. 5a of Judt (2020)] show little indication of upscale evolu-
tion, again consistent with the examples in section 3.

The 1Dk error spectra in Fig. 7, which are based on horizon-
tal velocities on the sphere, exhibit an artifact at the largest
scales that does not appear in the idealized, planar example of
Fig. 6. Specifically, the error spectra bend upward for scales
comparable to or larger than the scale of the window (roughly
wavenumber 10 in this case). The cause of this artifact is not

obvious to us, but it does not limit the ability of the windowed
1Dk spectra to capture the upscale error evolution.

6. Conclusions

Measures of error growth in meteorological forecast mod-
els are primary tools for assessing atmospheric predictability.
The spatial patterns of an error field are often analyzed
through Fourier decomposition to determine the prominent
error-growth length scales. It has become common2 to take
the latitudinal average of the Fourier transform in the zonal
direction to reduce 2D error spectra to 1D (1Dk spectra).
These 1Dk error spectra are roughly independent of scale
from large to small scales (basically a “flat line”) and maintain
this form as the error spectra grow with time. Such growth of
the error spectra is said to be “up-amplitude.” In contrast,
statistical predictability theory predicts error spectra that are
circularly symmetric in 2D wavenumber space with peak
amplitude at a finite scale. These theoretical 2D spectra are
reduced to 1D through integration around annuli in wave-
number space as a function of wavenumber magnitude k

(1Dk spectra). These error spectra increase from nearly zero
at large scales toward a peak at smaller scales and maintain
this form as the error spectra grow with time. Since the
smaller-scale peak wavenumber decreases with time (in the
“25/3” case), such growth of the error spectra is said to be up-
scale. The purpose of this note is to show that the two meth-
ods (1Dk and 1Dk) of reducing 2D spectra to 1D are not the
same, except in the special case of a power-law spectrum.

We show that 1Dk spectrum from a hypothetical error
field typical of statistical predictability theory exhibits the

FIG. 7. As in Figs. 4a and 4b, but for the windowed field where the error field is multiplied by a Hann window func-
tion with bounds from 108S to 108N. Because of the artifacts at the largest scales (see text), only spectral peaks at
wavenumbers. 10 are considered for marking with crosses.

2 In addition to the references in section 1, there are Zhang et al.
(2019, their Figs. 6–8), Snyder et al. (2003, their Fig. 5), and
McWilliams and Chow (1981, their Fig. 28). Figure 4 shows that
1Dk is still useful for estimating predictability limits as the same
saturation time comes from both the 1Dk and 1Dk analyses.
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“flat-line” low-wavenumber signature seen in many such analyses
in the literature. A hypothetical case of an error spectra growing
in amplitude with a decreasing peak scale, illustrates the “up-
amplitude” versus upscale descriptions. The relevance of statisti-
cal predictability theory was shown in Fig. 13 of Judt (2018) and
partly reproduced here as Figs. 4a and 4b. Using the same dataset,
Figs. 4c and 4d show that 1Dk-type error spectra exhibit the low-
wavenumber flat-line shapes while their 1Dk-type counterparts in
Figs. 4a and 4b do not.

Finally, we suggest how 1Dk spectra can be computed on
spatial subdomains, which is a useful diagnostic tool for error
fields that have spatially inhomogeneous statistics.

Although the analyst is at liberty to choose either 1Dk or
1Dk error spectra, only the latter forms a basis for compari-
son of meteorological-model error spectra and the predictions
of statistical predictability theory. If one chooses the former,
then a dynamical interpretation must be based on an error
equation resulting from a consistent application of a Fourier
decomposition and averaging of the governing equations. We
are unaware of any such equation in the literature.

Data availability statement. The output from the global
high-resolution simulations in Figs. 4 and 7 can be made avail-
able upon request.

APPENDIX

Hypothetical Error Fields and Spectra

To create the function fn,m shown in Fig. 1a, we first define

F̃k,l 5 A exp 2

����������
k2 1 l2

√
2 kc

( )2
k2w

1 2pif(k, l)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A1)

where f(k, l) is a random number ranging from 0 to 1, kc is
the wavenumber-space radius of the annulus of maximum |F̃ |
and kw is the width of its Gaussian distribution. The real part of
the inverse Fourier transform of (A1) gives the fn,m in Fig. 1a;
the Fourier transform of fn,m is used to construct the power
spectrum is shown in Fig. 1b which is subsequently used for the
1Dk and 1Dk spectra shown in Figs. 1c and 1d. The parameters
used for Fig. 1 are A 5 1, kc 5 40 and kw 5 20.

For the power-law case shown in Fig. 2, we define

F̃k,l 5 A
����������
k2 1 l2

√( )(a21)/2
exp[2pif(k, l)] (A2)

(with a 5 25/3 and A 5 10) and follow the steps outlined
in the previous paragraph.

Figure 3 is constructed using (A1) but with f 5 0 and then
following the steps outlined above. Cases are shown with
(A, kc) 5 (0.5, 80), (1.0, 40), (2.0, 20) to emulate error spectra
with decreasing peak wavenumber kc and increasing amplitude.
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