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ABSTRACT: In addition to initial conditions, uncertainty in model physics can also influence the practical predictability of
tropical cyclones. In this study, the influence that various magnitudes of uncertainty in the surface exchange coefficients of
momentum (Cd) and enthalpy (Ck) can have on an otherwise highly predictable major hurricane (Hurricane Patricia) is
compared with that resulting from climatological environmental initial condition uncertainty and the intrinsic limit for this
case. As the systematic uncertainty in Cd and Ck is reduced from 40% to 1%, the simulated uncertainty in the intensity and
structure is substantially reduced and approaches the intrinsic limit when uncertainty is reduced to 1%. In addition, the fore-
casted intensity and structure uncertainty only becomes less than that resulting from climatological environmental initial
condition uncertainty once the systematic uncertainty in Cd and Ck is reduced to ∼10%, highlighting the strong influence of
model error in limiting TC predictability. If Cd and Ck are perturbed stochastically, instead of systematically, it is shown that
the influence on the simulated intensity and structure is negligible and nearly identical to the intrinsic limit, regardless of the
magnitude of the stochastic Cd and Ck perturbations. While the magnitude of the stochastic Cd and Ck perturbations are com-
parable to the systematic perturbations, the stochastic perturbations are shown to not substantially perturb the time-
integrated inner-core fluxes of momentum or enthalpy that predominantly determine simulated tropical cyclone intensity. Last,
it is shown that the kinetic energy error growth behavior varies with the radius, azimuthal wavenumber, and ensemble design.

SIGNIFICANCE STATEMENT: The air–sea energy exchange beneath hurricanes is highly uncertain but strongly influ-
ences intensity. In this study, the influences of different magnitudes of surface-exchange coefficient uncertainty on
the simulated intensity of an intense hurricane is compared with that resulting from environmental initial condition
uncertainty and the intrinsic predictability limit. The main takeaway is that current surface-exchange coefficient uncer-
tainties result in larger intensity uncertainty than environmental initial condition uncertainty, and substantial improve-
ments in predictions are possible if current surface-exchange coefficient uncertainties are reduced. Furthermore, it is
shown that randomly perturbing the surface-exchange coefficients at each point in space and time is not the best ap-
proach to account for the influences of this uncertain physical process on hurricane prediction because it has minimal
influence on the simulated intensity.

KEYWORDS: Hurricanes/typhoons; Tropical cyclones; Air–sea interaction; Surface fluxes; Ensembles;
Numerical weather prediction/forecasting; Model errors

1. Introduction

Tropical cyclones (TCs) are devastating natural disasters
that are challenging to predict. TC intensity is a specifically
difficult detail to predict in numerical models because of
the importance in accurately representing coupled ocean–
atmosphere processes (e.g., Sanford et al. 1987; Bender
et al. 1993; Davis et al. 2008; Nystrom et al. 2020a) and the
influence of both environmental conditions and the TC in-
ner-core structure (e.g., Judt et al. 2015; Tao and Zhang
2015; Emanuel and Zhang 2016). In this study, we focus on
the strong influences of uncertainty in the surface-exchange
coefficients of momentum (Cd) and enthalpy (Ck) on the
predictability of an intense TC.

While the surface-exchange coefficients are only one aspect
of model physics that can influence the predictability of TCs,
their influence on simulated TCs is well established from both a
theoretical dynamics prospective (e.g., Ooyama 1969; Rotunno

and Emanuel 1987; Emanuel 2012; Wang et al. 2021) and in
practical applications simulating real TCs (e.g., Green and
Zhang 2013; Torn 2016; Nystrom and Zhang 2019). The maxi-
mum potential intensity (MPI) of tropical cyclones is believed
to be determined by a balance between surface entropy fluxes
and frictional dissipation (Emanuel 1997). More specifically,
the MPI can be derived by equating the entropy gained from
the ocean to the momentum lost through surface friction as� r0

rm

r�TsCkV(s*o 2 sb)rdr �
� r0

rm

rCdV
3rdr, (1)

where rm is the radius of maximum wind speed (RMW), r0 is
an outer radius, r is the boundary layer air density, Ts is the
sea surface temperature, � is the thermodynamic efficiency
[� � (Ts 2 To)/Ts; where To is the outflow temperature], V is
the surface wind speed, s*o is the saturation entropy with re-
spect to the sea surface, sb is the entropy of the boundary
layer air, and r is the radius. If it is further assumed that the
largest contributions from both the surface entropy flux and
frictional dissipation take place at the RMW, where the windCorresponding author: Robert G. Nystrom, nystrom@ucar.edu
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speed is maximized, the maximum potential wind speed (Vm)
can be estimated as

V2
m � Ck

Cd

�Ts(s*o 2 sb)|m: (2)

Therefore, the MPI can be modified in nature or numerical
models by changing the air–sea thermodynamic disequilib-
rium, the thermodynamic efficiency, or the ratio of the surface
exchange coefficients (Ck/Cd).

While the simulated intensity of TCs is well known to be
sensitive to the model representations of Cd and Ck, the wind
speed dependent representations of these variables are highly
uncertain, especially at high wind speeds (Sroka and Emanuel
2021). It is estimated that the current uncertainty in Cd for
wind speeds greater than hurricane force is at least 40%–50%
(Bell et al. 2012; Richter et al. 2016) and as large as 200% for
Ck (Richter et al. 2016). Considerable uncertainty remains in
Cd and Ck at high wind speeds because of limited observa-
tions and substantial disagreements between studies attempt-
ing to estimate Cd and Ck from both the atmosphere and
ocean sides (e.g., Jarosz et al. 2007; Komori et al. 2018; Hsu
et al. 2019; Curcic and Haus 2020; Troitskaya et al. 2020;
Sroka and Emanuel 2021). Furthermore, Richter et al. (2021)
demonstrated that the commonly used flux-profile may result
in low biased Cd estimates near the eyewall, because of limited
sampling, and we may therefore have pushed this approach
toward estimating Cd beyond its limit. As a result, Cd and Ck

uncertainty remains one major source of uncertainty in nu-
merical models limiting our ability to improve TC intensity
prediction.

Much of the previous research on TC predictability has fo-
cused on either the role of environmental conditions, such as
vertical wind shear, or inner-core dynamics in limiting TC pre-
dictability (e.g., Van Sang et al. 2008; Zhang and Sippel 2009;
Torn and Cook 2013; Zhang and Tao 2013; Judt et al. 2015;
Torn 2016; Emanuel and Zhang 2017; Nystrom et al. 2018).
One challenge in quantifying the predictability of TCs is
that it appears to be a function of environmental conditions
and varies throughout the storm life cycle, being most lim-
ited near genesis and rapid intensification onset. Despite
these challenges, recent studies have suggested a significant
gap between our prediction abilities with currently avail-
able procedures (practical predictability) and the best pos-
sible predictions with a nearly perfect model and nearly
perfect knowledge of the current atmospheric state (intrin-
sic predictability limit) (e.g., Emanuel and Zhang 2016).

Building on the predictability work of Lorenz (1969) and
Rotunno and Snyder (2008), Judt et al. (2015) analyzed the
kinetic energy (KE) error spectra of a real Atlantic hurri-
cane (Earl 2010) and demonstrated that errors rapidly
grew and saturated for the small scales while the azimuthal
wavenumbers 0 and 1 remained predictable through at
least 168 h. In addition, the error growth and the magnitude
of ensemble variance was found to increase with the spatial
scale of the stochastic perturbations. One key difference from
the classical turbulence perspective, however, is that predict-
ability should be evaluated at statistical equilibrium, which

TCs in nature seldom}if ever}reach. With that said, Brown
and Hakim (2013) analyzed an idealized 100-day simulation
at statistical equilibrium and used inverse modeling to sug-
gest that the intrinsic predictability limit of TCs is ∼2 days.
Conversely, Kieu and Moon (2016) suggested that the MPI
acts as an attractor and therefore TC intensity is predictable
within 8–10 m s21 near 5 days under favorable environmental
conditions.

The present study explores the influences of model error on
TC predictability. By perturbing Cd and Ck, the influences of
uncertainty in the model attractor (MPI) on TC predictability
is also explored. The primary objectives of this study are to 1)
quantify the influences of Cd and Ck uncertainty on the pre-
dictability of a real TC, 2) compare the influences of Cd and
Ck uncertainty with uncertainty resulting from environmental
initial condition (IC) uncertainty and the intrinsic limit, and 3)
demonstrate the differences between systematically and sto-
chastically perturbing Cd and Ck. Section 2 provides a basic
overview of the ensemble designs and model set up, section 3
presents multiple metrics of TC predictability and error
growth, and section 4 has some concluding discussion.

2. Modeling methodology and ensemble design

To assess the influences of uncertainty in the model repre-
sentations of Cd and Ck on TC predictability, we conducted a
series of ensemble forecasts of Hurricane Patricia (2015).
While only a single case, this hurricane was chosen for two
main reasons. First, Patricia has been previously shown to
have high intrinsic predictability (e.g., Fox and Judt 2018) but
yet real-time predictions were very poor (e.g., Kimberlain
et al. 2016; Rogers et al. 2017). Second, uncertainty in the
surface-exchange coefficients was suggested to be at least
one factor limiting the practical predictability (Nystrom
and Zhang 2019).

a. Modeling framework overview

All model simulations in this study were conducted us-
ing the Weather Research and Forecasting (WRF) Model,
version 3.9.1 (Skamarock et al. 2008). The WRF Model is
configured with four nested domains, each with two-way
feedbacks, horizontal grid spacing of 29, 9, 3, and 1 km, respec-
tively (378 3 243, 297 3 297, 297 3 297, and 297 3 297 grid
points, respectively) and the three innermost domains are vor-
tex following. Model physics options excluding the surface layer
physics, which will be perturbed in this study, are identical to
those of Nystrom et al. (2021). All simulations are uncoupled
(atmosphere only) with identical sea surface temperatures
(SSTs) and, unless otherwise perturbed, initial atmospheric con-
ditions are taken to be those from the 2100 UTC 21 October
EnKF analysis mean presented in Nystrom and Zhang (2019),
which assimilated all available conventional observations and
airborne tail Doppler radar radial velocity observations (Weng
and Zhang 2012, 2016). The boundary conditions for all
ensembles are also taken from the cycling data assimilation ex-
periment presented in Nystrom and Zhang (2019), originating
initially from the operational Global Forecast System (GFS).
All simulations are initialized from 2100 UTC 21 October and

MONTHLY WEATHER REV I EW VOLUME 1502074

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 10/20/22 03:52 PM UTC



run until 1200 UTC 24 October, approximately 12 h after
landfall.

In WRF the surface fluxes of sensible heat (SH), latent heat
(LH), and momentum (t) are calculated as

SH � 2rcpCHV10Du, (3)

LH � 2rLyCqV10Dq, and (4)

t � 2rCdV
2
10, (5)

where r is the density of air, cp is the specific heat capacity
of air, CH is the bulk exchange coefficient for sensible heat,
V10 is the total 10-m wind speed, Du is the potential temper-
ature difference between the sea surface and the boundary
layer air at 10 m, Ly is the enthalpy of vaporization, Cq is
the bulk exchange coefficient for latent heat, Dq is the water
vapor mixing ratio disequilibrium between the sea surface
and the boundary layer air at 10 m, and Cd is bulk drag
coefficient.

b. Ensemble configurations

In this study we present nine ensemble sets of 20 members
each (180 simulations in total). The first group of ensemble
sets explores the influences of varying magnitudes (40%, 30%,
20%, 10%, or 1%) of systematic uncertainty in the surface-
exchange coefficients (Cd and Ck) on TC predictability. These
ensembles are generated by systematically perturbing three
parameters (a, Vc, b) which systematically modify Cd and Ck.
More specifically, Cd is modified directly by a and Vc as

Cd � a 3 max[5, 20:014 3 min(Vc ,V10)2
1 1:033 3 min(Vc,V10) 1 4:895] 3 1024, (6)

where a is a multiplicative factor on Cd at all wind speeds,
Vc acts to saturate Cd above a given wind speed threshold, and
V10 is the total 10 m wind speed. Additionally, Ch (heat ex-
change coefficient) and Cq (moisture exchange coefficient)
are directly perturbed by b, and indirectly perturbed by a

and Vc through Cd, as

Ch � b 3
Cd

1 1 C1/2
d 3 (7:3R1/4

e* P
1/2
r 2 5) , (7)

and

Cq � b 3
Cd

1 1 C1/2
d 3 (7:3R1/4

e* S
1/2
c 2 5) , (8)

where b is a multiplicative factor on Ch and Cq at all wind
speeds, Re* is the roughness Reynolds number (Re* � u* 3 z0/y,
where u* is the friction velocity, z0 is the surface roughness
length and y is the kinematic viscosity of air), Pr is the Prandtl
number, and Sc is the Schmidt number (as in Nystrom et al.
2020b, 2021). To create the ensembles with varying magnitudes
of uncertainty, a, Vc, and b are each perturbed by randomly
sampling from a Gaussian distribution with a mean of a = 1.0,
Vc = 52.0, and b = 1.0 and standard deviation (s) of sa = 0.4,

0.3, 0.2, 0.1, and 0.01, sVc � 20:8, 15:6, 10:4, 5:2, and 0:52,
sb = 0.4, 0.3, 0.2, 0.1, and 0.01, for the 40%, 30%, 20%, 10%,
and 1% uncertainty ensembles, respectively. The approximate
range of uncertainty in Cd and Ck resulting from this random
sampling is shown in Fig. 1.

To highlight the difference between stochastically and sys-
tematically perturbing Cd and Ck, two additional ensemble
sets (Stochastic and 2xStochastic) stochastically perturb Cd,
Ch, and Cq by randomly sampling a normal distribution with
mean 0 and sCd � 0:53 1023 or 1.0 3 1023 and sCk � 0:23
1023 or 0.4 3 1023 (as in Torn 2016 for Stochastic and double
the magnitude for 2xStochastic) for each grid cell each
time step that the WRF surface layer code is called. The
approximate range of uncertainty in Cd and Ck resulting
from these stochastic perturbations are shown in Fig. 2. It
is important to note that this approach (Stochastic and
2xStochastic) differs from the systematic uncertainty
(Fig. 1) in that perturbations are spatially and temporally
uncorrelated. Therefore, the time-integrated domain-
averaged Cd and Ck will be approximately the same for all
stochastic ensemble members.

Last, two additional ensemble sets with either climato-
logical environmental perturbations (CV3) or very small
low-level water vapor mixing ratio perturbations (Intrin-
sic), 60.5 g kg21 as in Van Sang et al. (2008) and Zhang
and Tao (2013), are presented as a reference for compari-
son to the influence of environmental IC uncertainty and
the intrinsic predictability limit, respectively. By adding
only very small low-level water vapor mixing ratio perturba-
tions we can interpret this ensemble as sampling the intrinsic
predictability limit for this case because we have nearly a per-
fect knowledge of the initial state of the atmosphere.

c. Tropical cyclone scale-dependent predictability

To quantify the scale-dependent error growth, the ensemble
mean kinetic energy (KE) and the ensemble mean KE error
(E) are calculated from the 10 m wind speed, as in Judt et al.
(2015). The Fourier-decomposed KE is calculated in the

FIG. 1. Profiles of (top) Cd, (middle) Ck, and (bottom) Ck/Cd as
a function of wind speed with various magnitudes of uncertainty.
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azimuthal direction from the 10-m wind field in polar coordi-
nates. One consequence of using this methodology is that the
spatial scale of all azimuthal wavenumbers varies (increases)
with radius. Despite this, wavenumber 0 can be interpreted as
representing the axisymmetric TC structure, wavenumber 1 the
asymmetric TC structure, wavenumbers 2–5 the TC rainbands,
and wavenumbers $ 6 as convective scale structures. The
storm-scale KE is calculated by performing a 1-day azimuthal
Fourier-decomposition of the ensemble mean 10-m wind field
(V) in cylindrical coordinates and averaging the power spectra
within some outer radius (r0; r0 = 150 km here). Mathemati-
cally, the area-averaged KE per wavenumber (k) is calculated
as

KE(k) � 1
2

� r0

0
|V(k, r)|2rdr: (9)

Similarly, the storm-scale E is calculated by performing a
1-day azimuthal Fourier-decomposition on the ensemble
perturbation 10-m wind field (V′; where V′ � V 2 V) and
averaged across all ensemble members. Mathematically,
the area-averaged E is calculated as

E(k) � ∑20
m�1

1
2

� r0

0
|V′

m(k, r)|2rdr, (10)

where V′
m is the ensemble member perturbation wind field,

sometimes alternatively referred to as the error field.
By comparing the mean KE (KE) with the mean error (E)

the scale dependent error growth can be examined. In addi-
tion, the errors are considered saturated}or predictability is
lost}for that scale (wavenumber) in statistical equilibrium
when

E � 2KE (11)

(Lorenz 1969). Physically this occurs when the forecast is
wrong about the pattern with variance E and is completely

out of phase with KE for a given wavenumber. When consid-
ering a vortex, like a TC, this will never occur for wavenumber
0 so long as there is a vortex present (e.g., Judt et al. 2015).
This suggests that the storm-scale axisymmetric TC structure
is always predictable.

To partially examine the sensitivity of the error saturation
to the area over which KE and E are calculated, as well as to
emphasize the predictability of the eyewall itself, the eyewall
mean kinetic energy (KEm) and mean kinetic error energy
(Em) are also calculated within a narrow ring centered on the
ensemble mean radius of maximum winds (rm ;64 km) as

KEm (k) �
1
2

� rm14km

rm24km
V(k, r)∣∣ ∣∣2rdr (12)

and

Em (k) �
∑20
m�1

1
2

� rm14km

rm24km
V′

m(k, r)
∣∣ ∣∣2rdr, (13)

respectively. By averaging over only the eyewall, the re-
sults should be more representative of only TC intensity
and therefore more similar to that discussed in Brown and
Hakim (2013).

3. Results and discussion

a. Predictability of TC intensity metrics

Overall, the ensemble mean maximum 10-m wind speed
(Vmax) and minimum central pressure (Pmin) of each ensemble
is nearly identical at all forecast times (Fig. 3). Further-
more, there is good confidence in a rapid intensification
into a category-5 major hurricane in all ensembles. The
ensemble mean Vmax 6 1s is greater than category four
intensity, in all ensembles by 42 h.

On the other hand, the uncertainty in Vmax or Pmin clearly
varies considerably between the ensembles (Figs. 3 and 4).
Before landfall (ranging from 48 to 63 h), the largest uncer-
tainty in Vmax or Pmin among the ensembles is found in the 40%
systematic Cd and Ck uncertainty ensemble. With 40% system-
atic uncertainty in Cd and Ck the ensemble standard deviation
near the time of peak intensity (42 h) for Vmax (sVmax ) and
Pmin (sPmin ) is 16 m s21 and 34 hPa, respectively. When the sys-
tematic uncertainty in Cd and Ck is reduced to 30% or 20%,
the ensemble sVmax and sPmin is further reduced, relative to
40% systematic uncertainty. It is also noteworthy that uncer-
tainty in Pmin is reduced when systematic Cd and Ck uncer-
tainty is reduced from 30% to 20% but Vmax uncertainty is not
(Fig. 4). This apparent difference in uncertainty reduction in
Vmax and Pmin is likely related to the relative storm-scale na-
ture of Pmin in comparison to the smaller scale}and thereby
noisy}nature of Vmax. Continuing to reduce the systematic
uncertainty in Cd and Ck to 10% or 1% further reduces the
ensemble sVmax and sPmin (Fig. 4). Overall, reducing the sys-
tematic uncertainty in Cd and Ck from current levels (∼40%)
substantially reduces the uncertainty in the pointwise metrics
of TC intensity.

FIG. 2. Profiles of (top) Cd, (middle) Ck, and (bottom) Ck/Cd as
a function of wind speed with various magnitudes of stochastic
perturbations.
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The uncertainty reduction in pointwise intensity metrics is
nonlinear (Fig. 4). For example, sVmax and sPmin at 36 h are no-
tably reduced when going from 40% to 30% systematic Cd and
Ck uncertainty, but sPmin is only minimally and sVmax is not re-
duced when going from 30% to 20% systematic Cd and Ck un-
certainty. Further reducing systematic Cd and Ck uncertainty
from 20% to 10% again results in notably reduction of sVmax

and sPmin , however. In other words, the reduction in simulated
intensity uncertainty does not decrease at a constant rate with
the reduction in Cd and Ck uncertainty.

When environmental perturbations alone are considered
(CV3), the maximum simulated sVmax and sPmin over the first
45 h (prior to land interactions) are 6 m s21 and 10 hPa, re-
spectively (Fig. 4). After ∼45 h, sVmax and sPmin rapidly increase
in CV3 because of uncertainties in landfall timing (landfall in

CV3 ranges from 48 h to never occurring during the simula-
tion). In comparison with the influences of environmental IC
uncertainties (CV3), sVmax and sPmin only become less than
CV3 when systematic uncertainties in Cd and Ck are reduced
to ∼10%. This suggests that uncertainties in Cd and Ck need to
be reduced to ∼10% to be less limiting than current environ-
mental IC uncertainty, at least when environmental conditions
are very favorable for intensification as is the case here. In
other words, reducing systematic Cd and Ck to ∼10% is critical
to reduce intensity forecast uncertainty for this case. In addi-
tion, when Cd and Ck uncertainty is reduced to 1%, sVmax and
sPmin become comparable to the intrinsic limit, suggesting there
is no benefit to further reducing the uncertainties in Cd and Ck

to 1% or beyond. The maximum sVmax and sPmin over the first
24 h in Intrinsic are 2 m s21 and 5 hPa, respectively. This small

FIG. 3. Ensemble mean and standard deviation (shaded) of (a),(c) maximum 10-m wind speed and (b),(d) minimum
surface pressure. Thin gray horizontal lines in (a) and (c) denote the wind speed thresholds for a tropical storm and
category 1–5 hurricane on the Saffir–Simpson scale.

FIG. 4. Ensemble standard deviations for (left) maximum 10 m wind speed and (right) minimum surface pressure.
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intrinsic uncertainty in Vmax and Pmin is further indicative that
the intensity of Patricia was highly predictable, at least at this
forecast initialization time, consistent with Fox and Judt (2018)
and Qin and Zhang (2018).

When Cd and Ck are perturbed stochastically (Stochastic and
2xStochastic) sVmax and sPmin are always minimal (maximum of
2 m s21 and 4 hPa), regardless of the magnitude of the stochas-
tic perturbations (Figs. 3 and 4). Furthermore, even though the
magnitude of the Cd and Ck perturbations are substantially
larger than with 1% systematic uncertainty, the resulting fore-
cast uncertainties in Vmax and Pmin are similar between 1% sys-
tematic, Stochastic, 2xStochastic, and Intrinsic. This result
strongly suggests that stochastically perturbing Cd and Ck is not
an appropriate approach to capture the impacts of their
uncertainties on TC intensity prediction in numerical models,
at least when perturbed randomly at each grid point in space
and time.

b. TC structure predictability

In addition to pointwise metrics of TC intensity, TC struc-
ture is also sensitive to the magnitude of systematic uncertainty
in Cd and Ck. Like Vmax and Pmin, the uncertainty in the radial
extent of hurricane force winds uncertainty (R33; sR33) de-
creases as the systematic uncertainty in Cd and Ck decreases
(Fig. 5a). More specifically, as the systematic uncertainty in Cd

and Ck is reduced from 40% to 30%, 20%, 10%, or 1%, sR33

at 42 h is reduced from 17 to 10, 7, 4, and 2 km, respectively.
This corresponds to a 41%, 59%, 76%, and 88% reduction in
sR33 at 42 h relative to 40% systematic Cd and Ck uncertainty
for 30%, 20%, 10%, and 1%, respectively. It is also noteworthy
that for the first ∼24 h sR33 is similar for all ensembles except
40% Cd and Ck systematic uncertainty. This suggests that even
modest reductions in current Cd and Ck can substantially re-
duce uncertainty in the radial extent of hurricane-force winds at
short lead times. Furthermore, the large gap in sR33 between
40% and 30% systematic Cd and Ck uncertainty suggests the
presence of a key threshold in the predictability of the radial ex-
tent of hurricane force winds, namely that R33 is very sensitive
to large systematic Cd and Ck but resilient to smaller Cd and Ck

perturbations.
When Cd and Ck are perturbed stochastically sR33 is also

minimal (∼2 km at 42 h; Fig. 5a), regardless of the magnitude
of the stochastic perturbations. In addition, sR33 with

stochastic Cd and Ck is always like Intrinsic, further highlight-
ing that stochastically perturbing Cd and Ck has little influence
on TC structure. Also, like Vmax and Pmin, sR33 in CV3 is
nearly always less than 20% Cd and Ck systematic uncertainty,
except for brief period near 6 h and near/after landfall. There-
fore, reducing systematic Cd and Ck uncertainty to ∼10%
appears necessary for large-scale environmental condition
uncertainty to become as influential as systematic Cd and Ck

uncertainty in modulating TC structure.
In addition to R33, the standard deviation of integrated

kinetic energy (IKE; sIKE) for hurricane force winds}an
indicator of the overall destructiveness of a TC (Powell and
Reinhold 2007)}consistently decreases from 5 to 0.5 TJ at
42 h as the systematic uncertainty in Cd and Ck is reduced
from 40% to 1% (Fig. 5b). Also, like R33, sIKE only becomes
less than CV3 when the systematic uncertainty in Cd and Ck is
reduced to 10%. In addition, stochastically perturbing Cd and
Ck has minimal influence on sIKE and is like Intrinsic, consis-
tent with R33 and the pointwise intensity metrics. Other met-
rics of TC structure, such as the RMW or the radial extent of
tropical storm force winds (R17), yield similar results (not
shown).

In addition to differences in TC size, visual differences in the
range of simulated convective structures are also apparent be-
tween the ensembles. As the systematic uncertainty in Cd and
Ck is reduced from 40% to 10%, the uncertainty in the simu-
lated convective structure is substantially reduced (Fig. 6). With
40% systematic Cd and Ck uncertainty there is large variability
in the size of the TC eye, the spatial coverage of convection,
and the eyewall is even partially open in some ensemble mem-
bers. As the systematic uncertainty in Cd and Ck is reduced to
30%, 20%, or 10% the eye size and the spatial coverage of
convection exhibits less variation within the ensemble, espe-
cially when the systematic Cd and Ck uncertainty is reduced to
10%. When the systematic Cd and Ck uncertainty is reduced
to 10%, all ensemble members clearly simulate an intense hur-
ricane with similar size and overall convective structures. Only
small differences in the intensity and location of individual
convective cells are still visible with 10% systematic Cd and Ck

uncertainty.
Taking a closer look at the radial variability of the azimuthally

averaged 10-m tangential wind (Vt) field, the maximum standard
deviation is found radially inward of the azimuthal mean radius

FIG. 5. Ensemble standard deviations for (left) radius of hurricane-force wind speed and (right) IKE.
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of maximum winds for all ensembles (Fig. 7). The maximum
standard deviation for Vt (sVt ) being found radially inward
of the RMW is primarily the result of uncertainty in the
location of the RMW and the sharp gradient in Vt radially
inward of the RMW. As with the intensity and structure
metrics, sVt is reduced as the systematic uncertainty in Cd

and Ck is reduced. The observed reduction in sVt is because
of both reduced uncertainty in the maximum Vt and in the
reduced uncertainty of the RMW (Figs. 7a–e). In addition,
sVt is nearly identical with 1% systematic Cd and Ck unce-
rtainty, stochastic Cd and Ck uncertainty, and Intrinsic
uncertainty. Finally, before weakening/landfall, sVt only
becomes less than CV3 when the systematic uncertainty
in Cd and Ck is reduced to 10%, consistent with previous
results.

An additional metric often used to asses TC predictability
is the dry total energy (DTE) (e.g., Zhang and Sippel 2009;
Torn 2016). Azimuthally averaged DTE is calculated here
as

DTE(r, z) � 1
Nens

∑Nens

n�1
u(r, z)′2n 1 y (r, z)′2n 1

Cp

Tr

T(r, z)′2n
[ ]

,

(14)

where r is the radius, z is the height, Nens is the number of
ensemble members, u′ is the perturbation radial wind
(u′ � un 2 u, where u is the ensemble mean radial wind and
un is the ensemble member radial wind), y ′ is the perturbation
tangential wind, T ′ is the perturbation temperature, Cp is
the specific heat capacity of dry air, and Tr is the reference

FIG. 6. Ensemble postage stamps of reflectivity at 1 km for (top two rows) 40%, (second two rows) 30%, (third two rows) 20%,
and (bottom two rows) 10% systematic Cd and Ck uncertainty.

N Y S T ROM AND JUD T 2079AUGUST 2022

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 10/20/22 03:52 PM UTC



temperature (Tr = 300 K). For comparison, percentage dif-
ference DTE relative to CV3 is calculated at 36 h. Positive
(negative) values denote greater (less) ensemble DTE variance
relative to CV3. The change here to compare each ensemble
directly with CV3 is chosen to emphasize the relative influence
on inner-core error growth in comparison with that resulting
from environmental IC uncertainty. The percent change in
DTE variance can be interpreted as the difference in ensemble

variance relative to that caused by climatological environmental
IC uncertainty.

The DTE with 40% systematic Cd and Ck uncertainty is
over 200% greater than CV3 throughout the entire inner core
(Fig. 8a). As the systematic Cd and Ck uncertainty is reduced
to 30%, the percent difference in DTE relative to CV3 is
still positive throughout nearly the entire inner core (Fig. 8b),
indicating that ensemble DTE variance is much greater

FIG. 8. Percentage change in DTE relative to CV3 uncertainty for (a) 40%, (b) 30%, (c) 20%, (d) 10%, and (e) 1% systematic
and (f) stochastic uncertainties in Cd and Ck at 36 h. The black and gray contours highlight the ensemble mean tangential and radial
winds every 10 and 3 m s21, respectively.

FIG. 7. Radius–time Hovmöller diagrams of azimuthally averaged tangential wind speed (shaded). The ensemble mean azimuthally
averaged tangential wind speed is contoured every 10 m s21.
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(.200%) with 30% systematic Cd and Ck uncertainty than
CV3. One notable difference, in comparison with 40% system-
atic uncertainty, is that the greatest percent difference relative
to CV3 is found primarily within the eyewall and beyond ∼75 km
with 30% systematic uncertainty. As the systematic Cd and
Ck uncertainty is further reduced to 20%, the DTE variance
is still 75% greater than CV3 within the eyewall and radially
inward but is similar to CV3 radially outward of the eyewall
(Fig. 8c). Once the systematic Cd and Ck uncertainty is re-
duced to 10%, the DTE percent difference becomes negative,
indicating that ensemble DTE variance is now substantially
(∼50%–75%) less than CV3 (Fig. 8d). The negative percent
change in TC inner-core DTE, relative to CV3, with 10% sys-
tematic Cd and Ck uncertainty further underlines the need to
reduce current Cd and Ck uncertainty to reduce forecasting un-
certainty for this case. Additional decrease in the systematic
Cd and Ck uncertainty to 1% results in a further decrease in
DTE variance relative to CV3 (.75%) throughout the entire
inner core (Fig. 8e). Overall, continual reduction in systematic
Cd and Ck uncertainty results in continuous DTE variance
reduction throughout the TC inner core. Last, stochastically
perturbing Cd and Ck results in substantially less DTE vari-
ance (.75%) throughout the entire inner core than CV3
(Fig. 8f). In other words, stochastically perturbing Cd and
Ck again appears to have little influence on the simulated
TC.

While systematic Cd and Ck perturbation cause the largest
inner-core DTE, the domain total DTE (all model grid cells of
the innermost domain, D04) is also calculated to highlight
error growth associated with both the inner-core and the im-
mediate near-storm environment. In addition, the domain
total DTE–in combination with the inner-core DTE (Fig. 8)–also
partially reveals the interactions between error growth in the
near-storm environmental and TC inner-core region. The
domain total DTE quickly increases for the first 6 h in all en-
semble sets, with CV3 increasing the most rapidly (Fig. 9).
CV3 has the largest domain total DTE through the first ∼30 h,
saturating at ∼5 3 107 m2 s22 before landfall uncertainty

increases DTE again. The large CV3 domain total DTE
(Fig. 9) and the small inner-core DTE (Fig. 8) highlights that
the error growth observed in CV3 is confined to the near-
storm environment and does not strongly influence the inner
core until near landfall. Beyond ∼30 h, and before weakening/
landfall, the largest domain total DTE is found with 40% sys-
tematic Cd and Ck uncertainty, ∼73 107 m2 s22 at 42 h (Fig. 9).
The remainder of the ensemble sets always have smaller domain
total DTE than CV3, likely because the TC is only a fraction
of the total volume of D04, and CV3 directly perturbs the
large-scale environment. Furthermore, the relatively small do-
main total DTE (Fig. 9) and the large inner-core DTE (Fig. 8)
with systematic Cd and Ck perturbations highlight that Cd and
Ck perturbations primarily influence the error growth within
the TC inner core.

While the domain total DTE is less than CV3 when the sys-
tematic Cd and Ck uncertainty is 30% or less, the domain total
DTE still decreases as the systematic uncertainty in Cd and Ck

uncertainty is reduced (Fig. 9). In addition, the domain total
DTE for all ensembles with systematic Cd and Ck uncertainty
greater than 10% is noticeably greater than Intrinsic near the
time of peak intensity (42 h), highlighting the substantial gap
between the forecast uncertainty resulting from systematic Cd

and Ck uncertainty and the intrinsic limit throughout the en-
tirety of the innermost domain for this case. As the systematic
Cd and Ck uncertainty is reduced from 10% to 1% the domain
total DTE becomes nearly identical to Intrinsic, suggesting
that one is approaching the intrinsic limit of predictability for
this case. Finally, the domain total DTE in Stochastic and
2xStochastic is nearly identical to Intrinsic, regardless of the
magnitude of stochastic Cd and Ck perturbations.

c. Surface enthalpy and momentum flux uncertainty

TCs gain energy from the underlying warm ocean through
latent and sensible heat transfer and lose momentum through
surface friction. This balance between surface momentum
and enthalpy fluxes largely explains TC intensification and
the maximum intensity (e.g., Rotunno and Emanuel 1987;
Emanuel 2012). From Eqs. (3) to (5) one can see that these
surface fluxes are a function of the 10-m winds (V10 for sensi-
ble and latent heat and V2

10 for momentum), the respective
disequilibrium with respect to the ocean surface, and the re-
spective exchange coefficients. James de La Cruz et al. (2021)
specifically demonstrated that increases in the thermodynamic
disequilibrium or V10 could effectively increase the surface en-
thalpy fluxes and promote intensification. Ultimately, variability
within each ensemble, except for CV3 and Intrinsic, is initially
driven from systematic or stochastic Cd and Ck perturbations di-
rectly and subsequently from structural differences in the simu-
lated TC (e.g., V10, DT, and Dq), which in turn result from
Cd and Ck differences. Therefore, variance in the model simu-
lated surface enthalpy1 and momentum fluxes should largely
explain the simulated variance in TC intensity and structure.
This should be especially true in this case as environmental

FIG. 9. Domain total DTE norm (107 m2 s22).

1 The total surface enthalpy flux is calculated as the sum of the
surface sensible and latent heat fluxes (KFLX = SH1 LH).
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conditions are very favorable (e.g., vertical wind shear is low
and midlevel humidity is high).

To highlight the uncertainty within the surface fluxes in
each ensemble, a 2D snapshot of the standard deviation of
the friction velocity (u*) and surface enthalpy flux (KFLX) at
36 h is shown in Figs. 10 and 11, respectively. For all ensem-
bles, the standard deviation of u* and KFLX at 36 h is maxi-
mized within the eyewall where the wind speed is greatest. As
expected, the standard deviation of u* and KFLX decreases
as the systematic uncertainty in Cd and Ck is reduced. This re-
duction in the standard deviation of u* and KFLX is the result
of both the direct reduction in Cd and Ck uncertainty and the
reduction in wind speed uncertainty (intensity and structure),
which is also related to the reduction in Cd and Ck uncer-
tainty. In comparison to systematic Cd and Ck uncertainty, the
stochastic standard deviation is between the ensembles with
20% and 10% systematic Cd and Ck uncertainty. In other
words, there is still substantial uncertainty in u* and KFLX at
individual grid cells with stochastic Cd and Ck perturbations.
However, this uncertainty is almost entirely the result of the

stochastic Cd and Ck perturbations, since the intensity and
structure uncertainty is minimal (e.g., Figs. 4, 5, and 7). Fur-
thermore, these stochastic perturbations to u* and KFLX never
appear to feedback to the storm scale and do not drive substan-
tial differences in the overall TC intensity and structure, as will
be further discussed next. Without prescribed Cd and Ck per-
turbations (CV3 and Intrinsic), uncertainty in u* and KFLX
still develops, because of uncertainty in simulated surface
winds (Figs. 10 and 11). The u* and KFLX standard deviations
in CV3 are between 20% and 10% systematicCd and Ck uncer-
tainty, consistent with the uncertainty in TC intensity and struc-
ture becoming less than CV3 when systematic Cd and Ck

uncertainty is reduced to 10% (e.g., Figs. 4, 5, and 7). Likewise,
the u* and KFLX standard deviations in Intrinsic appear com-
parable with 1% systematic Cd and Ck uncertainty.

More quantitatively, the average u* and KFLX standard
deviations within 50 km are calculated every hour for each en-
semble (su* and sKFLX). The standard deviations of u* and
KFLX are first calculated at every grid point from the inner-
most domain (D04) and then averaged within 50 km from the

FIG. 10. Horizontal view of the ensemble standard deviation in friction velocity (u*) at 36 h.

FIG. 11. Horizontal view of the ensemble standard deviation in enthalpy flux (KFLX) at 36 h.

MONTHLY WEATHER REV I EW VOLUME 1502082

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 10/20/22 03:52 PM UTC



TC center, giving a quantitative measure of the average vari-
ability in u* and KFLX within the inner core. In agreement
with the 2-day snapshots of u* and KFLX standard deviation
at 36 h in Figs. 10 and 11, the average inner-core variability in
u* and KFLX decreases as the systematic uncertainty in Cd

and Ck is reduced from 40% to 1% (Figs. 12a,b). Additionally,
su* and sKFLX with 1% systematic Cd and Ck uncertainty is
nearly identical to Intrinsic at all forecast times and su* and
sKFLX become less than CV3 once the systematic uncertainty
in Cd and Ck is reduced to 10%. Last, su* and sKFLX increase
as the magnitude of the stochastic perturbations is increased.
More specifically, the magnitude of su* is similar to 20% (30%)
systematic Cd and Ck uncertainty in Stochastic (2xStochastic)
and the magnitude of sKFLX is similar to 20% (40%) systematic
Cd andCk uncertainty in Stochastic (2xStochastic).

To better quantify variability in the axisymmetric fluxes, the
standard deviation of the average u* and KFLX within 50 km is
calculated at all forecast times (su* and sKFLX). The quantities
u* and KFLX are first averaged within 50 km from the
TC center for each ensemble member and then the standard
deviation is calculated for each ensemble set. While both system-
atically and stochastically perturbing Cd and Ck resulted in sub-
stantial inner-core variability in u* and KFLX (Figs. 12a,b), our
theoretical understanding of TC intensification depends on the
axisymmetric surface fluxes beneath the eyewall, which dominate
owing to the large wind speeds found in this region (e.g., Ema-
nuel 1988). In addition, some energy exchange beyond the
eyewall, as the air spirals radially inward at the surface, may
also be important (e.g., Wang and Xu 2010; Kowaleski and Ev-
ans 2016). By first averaging u* and KFLX within 50 km of the

TC center for each ensemble member and then taking the
standard deviation we hope to better highlight the role of the
cumulative inner-core surface fluxes in driving the simulated
variability in TC intensity and structure.

Consistent with the average u* and KFLX variability within
the inner core (Figs. 12a,b), su* and sKFLX decrease as the
systematic uncertainty in Cd and Ck is reduced from 40% to
1% (Figs. 12c,d). This suggests that as the systematic uncer-
tainty in Cd and Ck is reduced, the reduction in average inner-
core u* and KFLX variability (su* and sKFLX) projects onto the
variability of the average inner-core u* and KFLX (su* and
sKFLX). The same behavior is not found in Stochastic and
2xStochastic, which has su* and sKFLX nearly equivalent to
Intrinsic in both cases. This strongly suggests that the variabil-
ity of the average inner-core u* and KFLX, which is only sub-
stantially perturbed with systematic Cd and Ck perturbations,
better explains the observed forecasted intensity and structure
uncertainty. In other words, unless the u* and KFLX uncertainty
alters the cumulative inner-core surface fluxes, the perturba-
tions have minimal influence on the simulated TC intensity or
structure.

d. Scale-dependent predictability analysis

TCs comprise a range of scales, extending from small-scale
turbulence O(,1) m to the eyewall O(10) km and storm scale
O(1000) km. To understand how errors grow in our various
ensembles across scales, the surface (10-m) wind speed is de-
composed into azimuthal wavenumbers and the mean KE er-
ror spectra [E(k)] averaged throughout the TC is compared
to the mean KE [KE(k)], as in Judt et al. (2015). The process

FIG. 12. (top) The average (left) u* and (right) KFLX standard deviation within 50 km from TC center and (bottom)
the standard deviation of the average (left) u* and (right) KFLX within 50 km from TC center.
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of averaging the Fourier-decomposed azimuthal KE error
and mean KE throughout the TC [within 150 km from the TC
center; Eqs. (9) and (10)] will be referred to hereafter as the
storm-scale predictability. Recall that, according to our theo-
retical understanding, a given wavenumber (k) loses predict-
ability when E(k) � 2KE(k) (Lorenz 1969). This process is
also referred to as error saturation and is visible in the subse-
quent figures approximately when the E(k) curve lies roughly
on-top-of the KE(k) curve. Last, while our simulated TC is
never in statistical equilibrium and the KE is increasing as the
storm intensifies, errors still appear to saturate at some wave-
numbers and E(k) subsequently grows in magnitude with
KE(k) thereafter.

In all ensembles, storm-scale errors in KE quickly develop
and amplify at all wavenumbers beginning at the first-time
step. Even after only a few hours, wavenumbers higher than

∼10 have already lost predictability (error is saturated; Fig. 13),
consistent with Judt et al. (2015). Focusing on wavenumbers
0–10, the storm-scale predictability is lost for wavenumbers
5–10 by 12 h and wavenumbers 3–10 by 24 h. This suggests
that storm-scale predictability of the KE associated with
wavenumbers 3 and higher is intrinsically limited to ∼1 day
for this case, regardless of the ensemble design.

While predictability is lost for wavenumbers 3 and higher
by 24 h in all ensembles, there are visible differences in the
error growth of wavenumbers 0–2 between the ensembles at
24 h (Fig. 13). Starting with wavenumber 0, E(0) is the great-
est with 40% systematic Cd and Ck uncertainty. Additionally,
as the systematic Cd and Ck uncertainty is reduced from 40%
to 1%, E(0) is also reduced. Furthermore, at 24 h, the storm-
scale E(0) is greater than CV3 with 40%, 30%, and 20% sys-
tematic Cd and Ck uncertainty, consistent with the uncertainty

FIG. 13. Storm-scale-averaged KE power spectrum for each ensemble at 3, 6, 12, 24, 36, and 45 h.
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in pointwise intensity metrics (Fig. 4). When the systematic
Cd and Ck uncertainty is reduced to 10%, the storm-scale
E(0) becomes less than CV3 (Fig. 13). Further reducing the
systematic Cd and Ck uncertainty to 1% results in E(0) com-
parable with Stochastic and Intrinsic. For wavenumbers 1 and
2, E(1–2) has not yet saturated by 24 h for any of the ensem-
bles, but the greatest storm-scale E(1–2) is found with CV3
(Fig. 13). CV3 likely has the largest E(1–2) because uncer-
tainty in environmental conditions cause the most rapid error
growth in TC rainband activity, which project strongly onto
wavenumbers 1 and 2. Last, while the greatest storm-scale
E(1–2) is found in CV3, a reduction in E(1–2) with reduced
Cd and Ck uncertainty is still evident and E(1–2) from Sto-
chastic is comparable to Intrinsic.

As the simulated TC further intensifies and approaches
the time of maximum intensity (∼45 h), the storm-scale

E(1–2) continues to increase in all ensembles, but never
becomes saturated for wavenumbers 0 and 1 for any of
the ensembles and only saturates with CV3 for wave-
number 2 at ∼45 h (Fig. 13). The fact that E(0–1) never
saturates by 45 h is consistent with Judt et al. (2015) and
suggests that these scales remain predictable throughout
Patricia’s life cycle. One additional unexpected result is
that the greatest E(0) is found with 40% systematic Cd and Ck

uncertainty but the greatest E(1–2) is found in CV3. This rela-
tive difference in E(0) and E(1–2) suggests that systematic Cd

and Ck uncertainty projects strongly onto wavenumber 0 and
the overall intensity of the storm, but projects less strongly
onto wavenumbers 1 and 2 in comparison with environmental
condition uncertainty in this case. Furthermore, it also sug-
gests that the greater E(1–2) in CV3 does not grow upscale to
strongly influence E(0).

FIG. 14. Eyewall-averaged (RMW6 4 km) KE power spectrum for each ensemble at 3, 6, 12, 24, 36, and 45 h.
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Comparing with CV3, the storm-scale E(0), for the period
through maximum intensity, only becomes less than CV3
once systematic Cd and Ck uncertainty is reduced to 10%.
This further suggests that reducing the systematic Cd and Ck

uncertainty to 10% is necessary to reduce E(0) to less than that
generated from CV3 uncertainty (Fig. 13). Finally, Stochastic
continues to result in similar E(k) growth as Intrinsic at all
scales and times. The similar E(k) growth from Stochastic and
Intrinsic further highlights that stochastically perturbing Cd and
Ck only has the same influence on simulated TC structure
uncertainty as random boundary layer moisture perturbations
(Intrinsic). Stochastically perturbing Cd and Ck is therefore
not an adequate approach to account for the influences of Cd

and Ck uncertainty on TC prediction in numerical models.
In many ways, averaging the KE spectrum over the entire

TC (within 150 km from the center) is not the most represen-
tative of TC intensity predictability. A potentially more repre-
sentative way to link the classical turbulence prospective on
predictability to TC intensity is to analyze the KE spectrum
within the eyewall only, in the immediate vicinity of the
RMW [64 km; Eqs. (12) and (13)].

When averaged within the eyewall, instead of over the
entire TC, errors are saturated for wavenumbers greater
than 3 in all ensembles by 6–12 h (Fig. 14). By 24 h errors
are saturated at all wavenumbers except wavenumber 0.
This suggests that the eyewall KE, except for the azimuthal
mean (k = 0), is unpredictable beyond 24 h in all ensembles.
Only the azimuthal mean eyewall KE remains predictable in
all ensembles. Despite the eyewall azimuthal mean KE always
remaining predictable, Em(0) still increases as the systematic
uncertainty in Cd and Ck increases. In addition, Em(0) again
becomes less than CV3 only once the systematic Cd and Ck un-
certainty is reduced from 20% to 10%. Some of the largest rel-
ative reduction in Em(0) is found when the systematic Cd and
Ck uncertainty is reduced from 20% to 10%, consistent with
pointwise intensity metrics (Figs. 3 and 4). Finally, stochasti-
cally perturbing Cd and Ck results in similar Em(0) as Intrinsic.
Overall, the error growth of eyewall KE is similar to the storm-
scale error growth for k = 0 and more rapid for k$ 0.

4. Summary and conclusions

The surface-exchange coefficients are highly uncertain
at high wind speeds and are well-known to influence TC
intensity and structure. In this study we quantify the influ-
ences of surface-exchange coefficient uncertainty on the
predictability of Hurricane Patricia (2015), an extremely
intense TC but also a TC with high intrinsic predictability
given the favorable environmental conditions. We con-
ducted nine 20-member ensembles with either systematic
Cd and Ck uncertainty (40%, 30%, 20%, 10%, or 1%), sto-
chastic Cd and Ck perturbations, CV3 climatological envi-
ronmental IC uncertainty, or small boundary layer water
vapor mixing ratio perturbations. This approach allows for a
systematic comparison of the error growth resulting from
(i) different magnitudes of systematic Cd and Ck perturbations,
(ii) differences between systematically and stochastically per-
turbing Cd and Ck, (iii) environmental IC uncertainty, and

(iv) the intrinsic limit for this case. While only a single case, the
results of this study are likely applicable to other strong TCs
which rapidly intensify under favorable environmental condi-
tions. The primary conclusions are as follows:

1) As the systematic uncertainty in Cd and Ck is reduced
from 40% to 1% the simulated intensity and structure un-
certainty are substantially reduced.

2) The forecasted intensity and structure uncertainty are larger
than that caused by environmental IC uncertainty until the
systematic uncertainty in Cd and Ck is reduced to 10%.

3) Perturbing Cd and Ck stochastically, instead of systemati-
cally, results in minimal intensity and structure uncertainty,
which is similar to the intrinsic limit for this case regardless
of the magnitude of the stochastic perturbations.

4) The lack of uncertainty in the area-averaged surface
momentum and enthalpy fluxes when Cd and Ck are
perturbed stochastically limits simulated intensity and
structure uncertainty.

5) While errors rapidly grow and saturate on small scales in
all ensembles, azimuthal wavenumber 0 KE errors never
saturate on either the storm-scale or within the eyewall in
any ensembles, suggesting the azimuthal mean KE error is
resilient to upscale energy growth. Wavenumber 0 KE
errors are, however, still maximized when Cd and Ck are
perturbed systematically.

The substantial reduction in intensity uncertainty as the un-
certainty in Cd and Ck is reduced highlights the gains in pre-
dictability possible by reducing current surface-exchange
coefficient uncertainties. As the systematic uncertainty in Cd

and Ck is reduced from 40% to 1% the simulated standard de-
viation in Vmax (Pmin) near peak intensity is substantially re-
duced from 15 m s21 (35 hPa) to 2 m s21 (3 hPa).
Additionally, the fact that uncertainty in Vmax and Pmin

caused by environmental IC uncertainty is smaller than that
caused by systematic Cd and Ck uncertainty, until reduced to
10%, suggests the practical predictability of other strong TCs
can likely also be improved by reducing Cd and Ck uncer-
tainty. Furthermore, because perturbing Cd and Ck stochasti-
cally at every model grid point and time step has minimal
influence on simulated intensity (the intensity uncertainty is
similar to the intrinsic limit for this case), stochastic perturba-
tions on small spatial and temporal scales do not appear to be
an appropriate approach to account for the influences of this
uncertain physical process on TC prediction. Like intensity,
simulated TC structure uncertainty is similarly influenced by
Cd and Ck uncertainty and is not strongly influenced when Cd

and Ck are perturbed stochastically.
The strong influence of systematic Cd and Ck perturbations

and the minimal influence of stochastic Cd and Ck perturbations
on simulated TC intensity are consistent with the results of
Torn (2016) which analyzed the average influence on 20 Atlan-
tic TCs over a 4-yr period. In contrast with Torn (2016), how-
ever, our results highlight the dominant influence systematic Cd

and Ck perturbations can have in limiting the practical predict-
ability of a TC under favorable environmental conditions. In
addition, the apparent insensitivity to stochastic Cd and Ck
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perturbations raises additional questions on the potential im-
portance of ocean waves in modulating TC intensity, through
larger temporal- and spatial-scale perturbations on Cd and Ck

(e.g., Moon et al. 2004a,b; Chen et al. 2020).
Consistent with hurricane Earl (2010; Judt et al. 2015),

the KE error growth is generally described by simultaneous
error growth at all scales. Furthermore, errors quickly satu-
rate for small scales but azimuthal wavenumbers 0 and 1 re-
main predictable for the storm-scale throughout Patricia’s
intensification. In addition to the storm-scale KE error
growth, it is also shown that only the azimuthal wavenumber
0 remains predictable for the eyewall region beyond ∼24 h.
This apparent predictability of the azimuthal mean maxi-
mum wind speed throughout Patricia’s intensification ap-
pears to differ with the loss of predictability by ∼48 h found
in the idealized simulations of Brown and Hakim (2013).
This difference in predictability may result from either envi-
ronmental conditions, which provide predictability for the
azimuthal mean, and/or differences in the predictability be-
tween the intensification phase and the steady-state period.
We leave such an explanation to future work.

While this study highlights the relatively strong influence
that Cd and Ck uncertainty can have on TC predictability, it
is important to acknowledge that only one TC and a single
initialization time are presented here. It is possible that dif-
ferent initialization times may reveal stronger or weaker
sensitivities to Cd and Ck perturbations. In addition, other
TCs}and specifically those with less favorable environmental
conditions}may have differing relative sensitivities to Cd and
Ck. Nevertheless, this study reinforces the importance of on-
going efforts to reduce current surface-exchange coefficient
uncertainties and highlights the positive influence those efforts
could have in improving TC intensity predictions.
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