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1.  Introduction

Tropical cyclones (TCs) are among the most de-
structive natural hazards, and predicting TCs is an im-
portant task of weather and climate models. Moreover, 
TCs are optimal testbeds for assessing the quality of 
numerical models, because their unique dynamics 
reveal deficiencies in the model formulation through 
artifacts such as unrealistic structure. The overall pur-
pose of the present study is to evaluate a new class of 
atmosphere models—global storm-resolving models1 
(Satoh et al. 2019)—in their ability to simulate TCs. 
Specifically, we report on TC-related achievements, 
deficiencies, and biases in nine global storm-resolving 
models, and we hope that our findings will pave the 
way for improving the next generation of weather and 
climate models.

Global models have been a vital instrument in TC 

prediction although they have not been able to accu-
rately predict TC intensity. A decade ago, Hamill et al. 
(2011) reported that global weather models, which at 
that time had mesh spacings between 50 km and 150 
km, were plagued by wind speed biases of down to 
−30 m s−1. Even though some progress has been made, 
the most recent models with mesh spacings between 
10 km and 25 km still fail to capture the high winds 
of TCs (e.g., Magnusson et al. 2019; Hodges and  
Klingaman 2019; Roberts et al. 2020). One of the 
main reasons for this shortcoming is insufficient 
horizontal resolution (Davis 2018). In fact, years of 
research with regional models have indicated that 
storm-resolving resolution (here defined as ≤ 5 km) 
is necessary for accurate simulation of the inner-core 
structure of TCs (e.g., Chen et al. 2007; Gentry and 
Lackmann 2010), which in turn is necessary to predict 
TC intensity (e.g., Davis et al. 2008; Gopalakrishnan 
et al. 2012; Fox and Judt 2018).

The preceding paragraph suggests that global 
storm-resolving models are ideal tools for TC predic-
tion, because they combine the advantages of current- 
generation global and regional models, that is, they 
offer global coverage and storm-resolving horizontal 

and
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1 �Global storm-resolving models are also referred to as global  
cloud-resolving models or global convection-permitting 
models. No matter what name one prefers, the important 
aspect of these models is that they explicitly simulate con-
vective storms and how smaller scales of motions couple 
to large-scale circulation systems.
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resolution. Indeed, there has been some qualitative 
evidence that global storm-resolving models capture 
the inner-core structure of TCs quite realistically (e.g., 
Fudeyasu et al. 2008; Zhou et al. 2019). Other studies 
have demonstrated that models with 7 – 10 km mesh 
spacings reduce some of the biases found in coarser- 
resolution models (Manganello et al. 2012; Nakano 
et al. 2017). However, the immense computational 
resources required to run global models with mesh 
spacings ≤ 5 km have so far precluded a detailed, 
TC-focused evaluation of those models. The present 
study attempts to fill this gap by evaluating the models 
that participated in the DYnamics of the Atmospheric 
general circulation Modeled On Non-hydrostatic Do-
mains (DYAMOND) initiative (Stevens et al. 2019), 
and it expands on the brief overview of TCs already 
presented in Stevens et al. (2019).

Given computational limitations and the general 
purpose of DYAMOND, it was not possible to evalu-
ate the models as typically done in the weather predic-
tion community, i.e., by computing errors of metrics 
such as maximum wind speed from a large number 
of short-range forecasts (e.g., DeMaria et al. 2014; 
Nakano et al. 2017). It was also not possible to eval-
uate long-term TC climatologies as in climate studies 
(e.g., Camargo et al. 2005; Bengtsson et al. 2007; 
Manganello et al. 2012; Roberts et al. 2020). Instead, 
we focused on answering the following questions:
• 	What are the biases in TC number, tracks, intensity, 

and size over the 40-day DYAMOND period?
• 	Do the models produce TCs with a realistic struc-

ture?
• 	Do the models have similar biases, or does each 

model have its own?
The validity of the study rests on three important as-

sumptions, namely (i) The 40-day DYAMOND period 
is sufficient to draw general conclusions about the TC 
characteristics in each model; (ii) objects identified as 
TCs by the tracking software (see Section 2) would 
also be identified as TCs by human forecasters—and 
vice versa; and (iii) the observations used to evaluate 
the models are sufficiently accurate.

We are confident that (i) holds true because the 
discrepancies between the models were substantial 
and almost certainly caused by different model formu-
lations. Furthermore, even though 40 days is relatively 
short, we have global statistics, and the sampling is 
not as sparse as one might intuit. It is more difficult to 
judge the validity of (ii) and (iii), but given the amount 
of past studies that relied on those assumptions, we 
assumed they would also hold for this work.

Lastly, we emphasize that high horizontal reso-

lution is necessary but not sufficient for accurately 
simulating TCs. Advances in ocean coupling and 
model physics are critical as well (e.g., Lee and Chen 
2014; Mogensen et al. 2017; Magnusson et al. 2019). 
One area that seems to be particularly important is the 
parameterization of the boundary layer (Kanada et al. 
2012; Kepert 2012; Zhang et al. 2015) and the surface 
layer, especially the surface momentum fluxes (Zeng 
et al. 2010; Green and Zhang 2013; Magnusson et al. 
2019).

The remainder of the paper is structured as follows: 
in Section 2, we present the data and methods. Section 
3 contains the results, organized into subsections on 
(i) TC number and tracks, (ii) intensity, (iii) size, (iv) 
structure, and (v) the sensitivity of TCs on resolution 
and parameterized convection. The findings are dis-
cussed in Section 4 and the paper ends with a summa-
ry and conclusions in Section 5.

2.  Data and methods

This study leverages the vast data repository of 
DYAMOND, which contains the output from the 
following nine global models: ARPEGE, FV3, GEOS, 
ICON, IFS2, MPAS, NICAM, SAM, and UM. The 
horizontal resolution of the models is given in Table 1.  
All models except GEOS were initialized with the 00 
UTC 1 August 2016 analysis from the European Centre 
for Medium-Range Weather Forecasts (ECMWF) and 
integrated for 40 days (1 August – 10 September 2016).  
The sea surface temperature and sea ice fields were 
prescribed using 7-day running mean analyses from 
ECMWF. For more information about the DYAMOND 
experiment and the participating models see Stevens 
et al. (2019) and references therein.

To identify TCs in the model output, we employed 
the GFDL vortex tracker (Marchok 2002; Biswas et al.  
2018). This software uses the following iterative 
process to provide TC position fixes: First, the tracker 
employs a single-pass Barnes analysis to determine 
the location of extrema in each of the following vari-
ables: relative vorticity at 10 m (maximum), sea-level 
pressure (minimum), wind speed at 10 m (minimum), 
relative vorticity at 850 hPa and 700 hPa (maximum), 
and wind speed at 850 hPa and 700 hPa (minimum). 
After the first iteration, additional iterations are 
performed. For each additional iteration, the Barnes 
analysis grid is centered on the center fixes from the 
previous iteration, and the grid spacing of the analysis 

2 �The IFS model considered here is an experimental version 
of the operational IFS model with 4-km mesh spacing and 
explicitly simulated deep convection.
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grid is halved to obtain fixes on a grid that is as fine as 
possible. The center fixes for all parameters are then 
averaged to produce a mean TC center position.

The tracker produces track files with 6-hourly 
records that contain TC location (latitude/longitude), 
maximum 10-m wind speed (vmax), minimum sea-level 
pressure ( pmin), and wind radii r17, r25, and r32, i.e., 
the maximum radial extent of 17, 25, and 32 m s−1 
winds in each compass quadrant (northeast, southeast, 
southwest, and northwest). A warm core criterion is 
applied, and tracks are discarded if a local maximum 
in the 300 – 500 hPa layer’s mean temperature is not 
present for at least 50 % of a given storm’s lifetime.

To evaluate the models, we used best track data 
from the International Best Track Archive for Climate 
Stewardship [IBTrACS version 4; Knapp et al. (2010, 
2018)] for the 40-day DYAMOND period. Specifi-
cally, we used the “official” data from the Tropical 
Cyclone Regional Specialized Meteorological Centres 
that are responsible for detecting TCs in their desig-
nated area of responsibility (e.g., the National Hurri-
cane Center for Atlantic and Eastern Pacific TCs), and 
we accounted for wind speed reporting differences by 
converting all vmax values to 1-min sustained winds 
following Harper et al. (2008). Note that the IBTrACS 
data do not contain direct observations or objective 
analyses, but subjective analyses from human fore-
casters based on available but limited observations. 
For simplicity, we nevertheless refer to the IBTrACS 
data as “observations”. Furthermore, we make the 
assumption that the IBTrACS vmax values are equiv-

alent to the simulated maximum instantaneous wind. 
According to Nolan et al. (2009), this may be a valid 
assumption at 1.33-km grid spacing, but at coarser 
resolution, the model instantaneous wind is somewhat 
less than a 1-min sustained wind.

For a number of reasons, the work flow was not 
trivial. For example, some groups provided the output 
on their native model mesh, which rendered the data 
unreadable for the tracker. Furthermore, the high- 
resolution output caused the tracker to falsely identify 
hundreds of convective objects as TCs. To overcome 
those issues, we carried out the following three-step 
process:
1. 	 Interpolate the output from each model to a 

common longitude/latitude grid with 0.5° resolu-
tion.

2. 	 Run the tracker on the interpolated grids. Keep in 
mind that the track files contain information from 
the smoothed data.

3. 	 Use the storm center information from step 2 to 
search for the actual vmax, pmin, r17, r25, and r32 in the 
native model files, and overwrite the data in the 
track files with these new values.

Even after this process, the software tracked objects 
that human meteorologists would not identify as TCs, 
such as disorganized convective systems and heat lows 
over the deserts of Iran and central Asia. To reduce 
the number of falsely-identified objects as much as 
possible, the track files were quality-controlled using 
the following criteria:
• 	Drop all storms that form inland over Arabia and 

Table 1.  Short names, resolutions, institutions, and references for the DYAMOND models. The horizon-
tal resolution is represented by the linear dimension of the area of the largest tile in each mesh ( Amax ).

Name Resolution Institution Reference
ARPEGE
FV3
GEOS
ICON
IFS
MPAS
NICAM
SAM
UM

2.5 km
3.3 km
3.3 km
2.5 km
4.8 km
3.8 km
3.5 km
4.3 km
7.8 km

Meteo France
GFDL
NASA
DWD, MPI-M
ECMWF
NCAR
University of Tokyo
Stonybrook University
UK Met Office

(Bubnová et al. 1995)
(Lin 2004)
(Putman and Lin 2007)
(Zängl et al. 2014)
(Malardel et al. 2016)
(Skamarock et al. 2012)
(Satoh et al. 2014)
(Khairoutdinov and Randall 2003)
(Walters et al. 2017)

Abbreviations: ARPEGE: Action de Recherche Petite Echelle Grande Echelle, FV3: Finite-Volume Cubed-
Sphere Dynamical Core, GEOS: Goddard Earth Observing System, ICON: Icosahedral non-hydrostatic 
model, IFS: Integrated Forecast System of the ECMWF, MPAS: Model for Predicting Across Scales, 
NICAM: Non-hydrostatic Icosahedral Atmospheric Model, SAM: Global System for Atmospheric Model-
ing, UM: Met Office unified model
GFDL: Geophysical Fluid Dynamics Laboratory, DWD: Deutscher Wetterdienst, MPI-M: Max-Planck- 
Institut für Meteorologie, ECMWF: European Centre for Medium-range Weather Forecasts, NCAR:  
National Center for Atmospheric Research
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Iran.
• 	Drop all storms with lifetimes under 48 h.
• 	Drop all storms that never achieved a vmax of 7.5 

m s−1.
• 	Drop all records poleward of ±40° latitude (i.e., 

remove extratropical transitions).
The IBTrACS data were quality-controlled using the 
same criteria to homogenize model data and observa-
tions. The final quality-controlled track files from the 
DYAMOND models can be obtained from Judt et al. 
(2020).

3.  Results

3.1  Number of tropical cyclones and tracks
Meteorological services observed a global total of 

24 TCs during the 40-day DYAMOND period, where-
as the models simulated between 12 and 31 TCs, i.e., 

50 – 140 % of the observed value (Fig. 1). Most of the 
models simulated fewer TCs than observed; specifical-
ly, six of the nine models (ARPEGE, FV3, ICON, IFS, 
MPAS, and SAM) simulated less than 24 TCs (Figs. 
1b, c, e – g, i), and only NICAM and UM simulated 
more TCs than observed (Figs. 1h, j). GEOS simulat-
ed exactly 24 TCs (Fig. 1d), however, considering the 
limited sample size and the likelihood that a different 
tracker may have yielded slightly different numbers, 
we do not wish to emphasize the exact number of TCs 
each model produced.

According to the observations, the Western Pacific 
was the most active basin during the DYAMOND 
time period, followed by the Eastern Pacific, Atlantic, 
and Indian Oceans. All models agreed that the Western 
Pacific was going to be the most active basin, and the 
simulated tracks were generally oriented from south 

Fig. 1.  TC tracks and numbers from observations (black/grey) and models (orange) for the DYAMOND period (1 
August – 10 September 2016). Numbers are given for each basin (Indian Ocean, Western Pacific, Eastern Pacific, 
Atlantic); the global total number of TCs is shown in the lower right.
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to north as in the observations (Fig. 1). However, the 
models were not as successful in the other basins. For 
example, in the Eastern Pacific, all models, except 
MPAS (Fig. 1g), simulated fewer TCs than observed, 
and in most models there was less agreement between 
the orientation of the observed and simulated tracks. 
FV3 seems to have done best in terms of tracks in this 
basin (Fig. 1c). TC activity in the Atlantic proved to 
be particularly difficult to capture, and some models 
simulated a very active basin while others simulated 
a very quiet one. Specifically, NICAM produced 11 
Atlantic TCs (Fig. 1h), whereas FV3 and IFS only 
produced one (Figs. 1c, f).

TC formation events during the DYAMOND period 
were not spread out uniformly over time but occurred 
in more or less well-defined periods (Fig. 2, black 
dots). The models simulated the temporal modulation 
of activity in rough agreement with the observations. 
For example, in the Western Pacific, most models 
correctly simulated a greater number of formation 
events before 22 August than after that date (Fig. 2a). 
In the Eastern Pacific, the models missed some of the 
formation events in early August, but they agreed with 
the observations on a second round of activity in late 
August/early September (Fig. 2b). In the Atlantic, 
about half of the models suggested a relatively active 
period in mid/late August, around the same time four 
formation events were observed (Fig. 2c). By contrast, 
the models struggled with capturing the timing of TC 
formation in the Indian Ocean (Fig. 2d); however, 
with only two observed events, this basin is likely not 
representative.

At this point we can only speculate why the models 
were able to capture the temporal modulation of activ-
ity beyond the typical predictability limit of weather  
prediction, which is around two weeks. One possible 
reason is that the models were able to capture the 
modulating effect of intraseasonal variability as previ-
ously demonstrated by Nakano et al. (2015). Another 
possible reason is that the prescribed sea-surface 
temperatures artificially impart longer predictability 
on the atmosphere.

Perhaps most importantly, Fig. 2 demonstrates that 
no model suffered from a climate drift; that is, no 
model showed the number of TC formation events to 
unrealistically increase or decrease over the 40-day 
period. This highlights the quality of the DYAMOND 
models, which were not tuned for the experiment.

As a final remark, we note that UM produced a 
three member mini-ensemble instead of a single 
simulation. The differences in TC numbers and tracks 
within this ensemble were as large as (or at times 

larger) than inter-model differences (not shown). This 
indicates that more simulations and ensemble runs are 
required to properly assess the predictive skill of each 
model beyond the broad statements made earlier.

3.2  Tropical cyclone intensity
Time series of vmax in Fig. 3 provide a broad over-

view of the intensity of the TCs and allow for a cur-

Fig. 2.  Timeseries of TC formation events in the 
Western Pacific (a), Eastern Pacific (b), Atlantic  
(c), and Indian Ocean (d) from observations 
(black) and models (orange).
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sory model evaluation. Some biases are evident; for 
example, ICON and SAM produced storms that were 
generally too weak (Figs. 3e, i), whereas ARPEGE 
produced a few storms that were much too strong. In 
fact, ARPEGE produced storms with unrealistically 
high vmax of > 100 m s−1 (Fig. 3b), most likely because 
the evaporation coefficient was set to a wrong value 
(Stevens et al. 2019). 

According to the observations, the TCs during the 
first 2 weeks of August remained relatively weak with 

only two storms reaching hurricane intensity (vmax ≥ 
33 m s−1; Fig. 3a). By contrast, some of the TCs that 
formed in the second half of August became quite 
intense, with four storms reaching major hurricane 
intensity (vmax ≥ 50 m s−1). Most models had issues 
with capturing this pattern. Specifically, a number of 
models simulated storms in the first half of August 
that were too intense (ARPEGE, GEOS, NICAM, 
UM; Figs. 3b, d, h, j). From all models, MPAS seems 
to have best captured the overall pattern (Fig. 3g).

To evaluate the models regarding intensity in more 
depth, we compared the observed and modeled fre-
quency distributions of vmax (Fig. 4) and pmin (Fig. 5). 
We chose to compare frequency distributions instead 
of computing vmax and pmin errors, because the models 
did not simulate all observed TCs, and not all simu-
lated TCs were observed. We present the frequency 
distributions by way of kernel density estimates 
(Silverman 2018); this method yields smooth curves 
that make a comparison easier. The kernel density 
estimates were implemented using the Python Seaborn 
library.

The observed vmax distribution has a broad primary 
peak centered near 20 m s−1, a secondary peak near 50 
m s−1, and a fat tail toward higher values (Fig. 4). All 
models were able to produce this bi-modal distribu-
tion to some degree, but certain models deviated more 
from the observations than others. ICON and SAM 
deviated most dramatically: Both models produced a 
narrow primary peak, mainly because they were not 
able to simulate high intensities (Figs. 4d, h). FV3 and 
GEOS shifted the secondary peak to higher values 
(Figs. 4b, c), whereas IFS and MPAS shifted it to 
lower values (Figs. 4e, f). ARPEGE produced a very 
broad distribution, partly related to its over-intensifica-
tion issue (Fig. 4a). NICAM reproduced the observed 
distribution for vmax > 25 m s−1 better than the other 
models, but missed some of the weaker intensities 
with vmax < 20 m s−1 (Fig. 4g).

The observed pmin distribution has a well-defined 
primary peak around 1000 hPa, and a fat tail extend-
ing toward lower pressures with a hint of a secondary 
maximum near 950 hPa (Fig. 5). All models captured 
the general shape of the observed distribution, with 
MPAS and UM matching the observations best (Figs. 
5f, i). Most of the other models produced storms that 
were too deep, although in different ways. In FV3, the 
distribution had the same shape as the observation but 
shifted to deeper values (Figs. 5b); in IFS, the second-
ary maximum was much more pronounced than in the 
observations (Figs. 5f); and GEOS was somewhere 
between FV3 and IFS (Figs. 5c). In ARPEGE and 

Fig. 3.  Timeseries of maximum surface wind 
speed (vmax) for each TC from observations (black, 
grey) and models (orange).
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NICAM, some storms were much deeper than the ob-
servations, causing the tail to stretch too far to the left 
(Figs. 5a, g). SAM is unique in that the main peak was 
shifted to much higher values. We shall note here that 
SAM’s pmin values are ambiguous, because SAM uses 
the anelastic equations and pressure can only be de-
termined to within a function proportional to the base-
state density field with arbitrary amplitude (Bannon 
et al. 2006).

Lastly, we evaluated the overall TC activity by 
means of accumulated cyclone energy (ACE), a 
quantity that estimates the wind energy produced by 
one or multiple TCs over their lifetime. It is computed 
according to ACE = 10−4 å v 2max, where vmax is in 
units of knots (1 knot = 0.51 m s−1). In the context of 
this study, “ACE” refers to the combined ACE of all 
storms during the DYAMOND period. Concretely, 
for each model and the observations, we squared all 
6-hourly vmax values, summed them up, and multiplied 
them by 10−4. According to the observations, the 
ACE during the DYAMOND period was 169 (Fig. 6). 
Since the wind speed enters the ACE calculation as a 
squared value, ACE is quite sensitive to uncertainty 
in the analyzed vmax values. We therefore estimated a 

lower and upper bound by assuming that all observed 
vmax records have an error of ±5 m s−1, an estimate 
based on Torn and Snyder (2012) and Landsea and 
Franklin (2013). This assumption yielded a lower 
bound of 118 ACE units and an upper bound of 230 
ACE units. Most models were within or slightly 
above these uncertainty bounds, indicating that the 
DYAMOND models produced realistic amounts of 
ACE, even without tuning. Only three models were 
clearly outside the uncertainty bounds: GEOS overes-
timated ACE, whereas ICON and SAM produced less 
ACE than observed.

The three members of the UM mini-ensemble offer 
a glimpse at the intra-model spread. It seems that the 
intra-model spread is in the range of the observational 
uncertainty, but slightly less than the inter-model 
spread (as far as the limited numbers of ensemble 
members can tell).

Finally, we emphasize that none of the DYAMOND 
models featured ocean coupling. Consequently, the 
simulations did not account for the effect of storm- 
generated ocean cold wakes—which is to induce 
some weakening. In an otherwise unbiased model, TC 
intensity should therefore be somewhat higher than 

Fig. 4.  Kernel density estimates of maximum wind speed from observations (black) and models (orange).
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observed; in other words, the models that reproduce 
the observed TC intensities/ACE may actually under-
estimate TC intensity/ACE.

3.3  Tropical cyclone size
Size is an important TC parameter because it 

correlates with the risk for storm surge, but it is infre-
quently used for model validations. We examined the 
radius of gale-force winds (r17) and here present the 
median of all r17 records as our metric of choice (Fig. 
7). Results for r25 and r32 were qualitatively similar (not 
shown), indicating that the results are not sensitive to 
a particular wind speed threshold. The observational 
error bars were computed by increasing/decreasing 
each r17 record by 50 % before determining the 
median value (Landsea and Franklin 2013).

In general, the models overestimated TC size. TCs 
in ARPEGE, FV3, ICON, and NICAM were substan-
tially larger than observed (Figs. 7a, b, d, g). In fact, 
ARPEGE and ICON produced very expansive wind 
fields, and their median r17 reached radially outward 
to 300 km (more than double the observations). In 
contrast, the median size of TCs in GEOS matched 
the observations remarkably well (Fig. 7c), and UM 

Fig. 5.  Kernel density estimates of minimum sea-level pressure from observations (black) and models (orange).

Fig. 6.  Accumulated cyclone energy (ACE) from 
observations (grey) and models (orange). The 
lower bound of the uncertainty range in observed 
ACE assumes that all vvmax observations have an 
error of −5 m s−1 or +5 m s−1 (upper bound). The 
arrows with numbers 2 and 3 along the UM bar 
mark the ACE in the two additional members of 
the UM mini-ensemble.
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came in as a clear second (Fig. 7i). Storms in IFS 
and SAM were somewhat smaller than observed, but 
still within the uncertainty estimates (Figs. 7e, h). A 
common bias in the models was associated with the 
asymmetry of the wind field. Concretely, the observed 
median r17 was largest in the northeast quadrant, but 
in FV3, ICON, MPAS, and NICAM, it was largest in 
the southeast quadrant (Figs. 7b, d, f, g). This result 
suggests that the models are deficient in their repre-
sentation of TC structure, the prospect of which is 
examined in the next section. 

3.4  Tropical cyclone structure
The TC wind-pressure relationship, i.e., the func-

tion that relates pmin to vmax, is often used to inform 
whether models simulate TC structure realistically. 
The DYAMOND models produced a variety of wind 
pressure relationships, with some models being closer 
to the observation than others (Fig. 8). FV3 and GEOS 
stand out for reproducing the observed relationship 
remarkably well (Figs. 8b, c). Most other models have 
a tendency to produce a relationship that drops off too 
fast, or in other words, for a given pmin, the vmax is too 
low. This behavior was most pronounced in ICON 
(Fig. 8d), and less noticeable in ARPEGE and MPAS 
(Figs. 8a, f). A possible explanation for this behavior 
is discussed in Section 4. SAM was unique and had 
an unrealistic wind-pressure relationship that bended 

Fig. 7.  Average storm size as measured by the median 17 m s−1 wind radius for each storm quadrant from observa-
tions (black) and models (orange). Dashed grey circles indicate radius intervals of 100 km. The error bars in the 
observations are based on an error estimate of 50 %.
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upward (Fig. 8h). This phenomenon was not due to a 
single outlier but likely related to the surface pressure 
field being an ambiguous quantity in this model (see 
also Section 3.2).

Since the 10-m winds in a TC and therefore vmax 
are strongly affected by the surface layer parameter-
ization, we also investigated the relationship between 
pmin and 850-hPa vmax. The graphs were qualitatively 
similar to Fig. 8 (not shown), indicating that the 
wind-pressure relationships in Fig. 8 are not merely a 
product of each model’s boundary layer and surface 
layer parameterizations, but they stem from differenc-
es in the overall model implementation including the 
dynamical cores.

Snapshots of 10-m wind speed demonstrate the 
diversity of the models in simulating the surface 
wind field (Fig. 9). There were striking differences in 
eyewall shape, size, and symmetry, as well as in the 
radial extent of the wind field. Some models produced 
unrealistic wind fields, either too large and too strong 

(ARPEGE; Fig. 9a), or too faint and with peculiar 
waviness (SAM; Fig. 9h). The wind fields of FV3, 
GEOS, and MPAS were arguably most similar to that 
of a canonical intense TC, with a distinct eyewall that 
contained multiple convective- and mesoscale asym-
metries (Figs. 9b, c, f).

The ICON example was unique in that it did not 
reveal a distinct eyewall with sharp gradients; its wind 
field was rather diffuse and spread out over a large 
area (Fig. 9d). In contrast, the IFS example was a 
very small TC with a radially constrained wind field 
(Fig. 9e). The NICAM example, Fig. 9g, had an even 
larger hurricane-force (wind speed ≥ 33 m s−1) wind 
field than ICON, but it also had a distinct eyewall like 
most other models—albeit somewhat smoother than 
the eyewalls in FV3, GEOS, and MPAS. The wind 
field from the UM example exhibited the smoothest 
structure, the widest eyewall, and the clearest imprint 
of the model mesh—all consistent with UM being the 
model with the lowest resolution (Fig. 9i).

Fig. 8.  TC wind-pressure relationships from observations (black) and models (orange). The curves are least-squares 
fitted quadratic functions. Note: the peculiar shape of the fit line in SAM (h) is not caused by the obvious outlier at 
65 m s−1 and 950 hPa. Excluding this outlier will not change the fit substantially.
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A closer look at the kinematic and thermodynamic 
structure of the simulated TCs was made possible by 
creation of composite means of the azimuthally-aver-
aged tangential wind, vertical wind, boundary layer 
inflow, and temperature anomaly (Figs. 10 – 12). Each 
composite mean comprised all instances (“snapshots”) 
where a storm’s vmax is ≥ 33 m s−1. This means that 
each panel reflects the aggregate information from 

10 – 100 s of individual snapshots (as noted in Fig. 10),  
a number that should be large enough to obtain at least 
a somewhat robust analysis, even if the number of 
TCs is limited. The data of the composite means are 
available for download (Judt et al. 2020).

Broadly speaking, all models produced a typical 
kinematic structure, that is, a well-defined primary 
circulation with a tangential wind maximum in the 

Fig. 9.  Snapshots of 10-m wind speed of the strongest storm from each model at the time of peak intensity.
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lower troposphere near the storm center and a well- 
defined secondary circulation manifested by strong 
radial inflow in the boundary layer, rising motion in 
the eyewall region, and radial outflow in the middle 
to upper troposphere (Fig. 10). Despite the overall 
agreement, there were noteworthy differences between 
the models, which will be discussed in the next few 
paragraphs.

The differences in the overall tangential wind struc-
ture can be elucidated by comparing the size of the 
radius of maximum tangential wind, the compactness 
of the wind maximum (specifically, the radial extent 

of the 35 m s−1 isotach), and the decay of the tangen-
tial wind in the radial and vertical direction. The com-
posite storms had radii of maximum tangential wind 
roughly between 30 km and 70 km, with ARPEGE 
and IFS on the lower end (Figs. 10a, e) and ICON on 
the upper end (Fig. 10d). In FV3 and MPAS, the wind 
maximum was comparatively narrow and confined, 
and the radial extent of the 35 m s−1 isotach was less 
than 20 km (Figs. 10b, f). Contrarily, in ICON and 
NICAM, the wind maximum was rather broad, and 
the radial extent of the 35 m s−1 isotach was greater 
than 50 km (Figs. 10d, g). Differences in the radial 

Fig. 10.  Composite means of azimuthally-averaged tangential wind speed (grey shading) and radial/vertical flow 
(colored streamlines) from each model in radius-height space. The 20 m s−1-contour is annotated for reference. The 
composite means were created by averaging over all instances (“snapshots”) where a storm’s vmax ≥ 33 m s−1. The 
number of individual snapshots comprising each composite is indicated next to the model name.
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and vertical decay rates mirror the previous discussion 
of storm size, that is, models in which the tangential 
wind decayed more slowly, such as in ICON and 
NICAM, were the ones that produced comparatively 
larger storms. Given the lack of an equivalent obser-
vational dataset, it is difficult to assess which model 
produced a particularly realistic tangential wind 
structure. The observational composites of Gao et al. 
(2019, their Fig. 5c) and Komaromi and Doyle (2017, 
their Fig. 7a) at least suggest that no model produced 
a particularly unrealistic structure.

As for the vertical motion, ARPEGE and IFS had 
the steepest eyewall slopes (Figs. 10a, e). The other 
extreme was UM, which had the most pronounced 
eyewall tilt (Fig. 10i). In ICON and NICAM, the eye-
wall updraft was spread out and diffuse (Figs. 10d, g),  
but in IFS and MPAS it was relatively narrow and 
confined (Figs. 10e, f). Besides these differences in 
the eyewall region, there were other differences in the 
rainband region. Specifically, the vertical motion be-
tween r = 100 and r = 250 km was noticeably stronger 
in ICON, MPAS, and NICAM than in GEOS, IFS, 
and SAM (Figs. 10d, f, g versus Figs. 10c, e, h). This 
difference may be a reflection of more or stronger 
rainbands in the former models.

Again, it is difficult to say which models produced 
a particularly realistic structure because no equivalent 
observational dataset exists for the TCs observed 
during the DYAMOND period. Stern and Nolan (2009) 
demonstrated that the slope of the eyewall depends on 
the size of the radius of maximum wind, which would 
explain why the eyewall updraft in IFS had a steeper 
slope than in UM. However, The Stern and Nolan 
study cannot explain the differences between models 
with similarly sized radii of maximum wind, such as 
MPAS and UM.

The upper-tropospheric outflow also differed be-
tween the models, especially with regard to the altitude  
of the outflow maximum and the depth of the outflow 
layer. For instance, the outflow was comparatively 
deep in FV3 (Fig. 10b) and comparatively shallow in 
IFS (Fig. 10e). In ARPEGE and ICON, the outflow 
maximum occurred at a height of 15 km (Figs. 10a, d),  
but in most of the other models, it occurred mostly 
below 15 km. 

One particularly noteworthy feature, produced 
somewhat more prominently by FV3, GEOS, and IFS, 
is the descending flow above the outflow layer that 
merges with the ascending outflow from below (Figs. 
10b, c, e). We are not aware of either observational or 
modeling studies that demonstrate such a feature in 
TCs; on the contrary, there is reasonable evidence to 

suggest that at least in intense TCs, it may be common 
to have a shallow layer of weak inflow atop the upper- 
level outflow layer (e.g., Kieu et al. 2016; Komaromi 
and Doyle 2017; Heng et al. 2017; Duran and Moli-
nari 2018).

Inter-model differences in the boundary layer 
inflow were mostly in the form of variations of inflow 
layer depth and strength (Fig. 11). Specifically, IFS 
and SAM produced comparatively shallow inflow 
layers that did not extend much above 1 km height 
(Figs. 11e, h). In GEOS and ICON, the inflow layer 
had a maximum depth of 1.5 km (Figs. 11c, d), and 
in the other models, its maximum depth extended 
slightly above 1.5 km. The observational composite 
of Zhang et al. (2011, their Fig. 5b) indicates that the 
inflow layer depth increases from 900 m at the radius 
of maximum wind to 1.5 km roughly 200 km from the 
center, which is in broad agreement with most of the 
models.

From basic TC dynamics, one would expect that the 
inflow strength correlates with the average intensity of 
the TCs simulated by the models. However, this was 
not the case. For example, ICON, which simulated 
mostly weak TCs, produced stronger inflow than FV3, 
MPAS, and NICAM, which simulated much stronger 
TCs (Fig. 11d vs. Figs. 11b, f, g). In fact, with inflow 
magnitudes of 9 m s−1, the inflow in FV3, MPAS, and 
NICAM was relatively weak, compared not only to 
the other models, but also to observations, which show 
an inflow magnitude of 20 m s−1 (Zhang et al. 2011).

Besides the kinematic structure, we also explored 
the thermodynamic TC structure in our set of global 
storm-resolving simulations. To this end, we examined 
the TC warm core, here represented by the tempera-
ture anomaly with respect to the mean temperature 
between r = 300 km and 700 km (Fig. 12). All models 
produced a warm core and agreed on the general 
core structure (expansive in the upper levels, radially 
confined below). Differences emerged mostly in the 
vertical structure of the warming inside the TC eye, 
and in the upper and lower level temperature anoma-
lies outside the eye.

Most models agreed that the warm anomaly peaks 
at a height of just less than 10 km. More pronounced 
differences between the models appeared in the ver-
tical structure of the warm core, which ranged from 
a single, vertically confined maximum in FV3 and 
GEOS (Figs. 12b, c), to an extended vertical column 
in NICAM (Fig. 12g), to a clear double maximum of 
anomalously warm air in UM (Fig. 12i). The other 
models fell somewhere among these three distinct 
cases. Most observational studies indicate that the 
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warm core is maximized in the upper troposphere 
(Frank 1977; Brammer and Thorncroft 2017; Koma-
romi and Doyle 2017), in agreement with most of 
the DYAMOND models. However, Stern and Nolan 
(2012) claimed that the maximum warming should be 
between 4 km and 8 km, with a potential secondary 
maximum at higher altitudes. Kieu et al. (2016) also 
claimed that a double-warm core structure is the norm 
rather than the exception. If one were to believe the 
Stern and Nolan and Kieu et al. studies, then UM had  
a particularly realistic thermodynamic structure, even 
though it was an outlier among the DYAMOND 
models.

Compared to the model differences in terms of 
the warm core, the differences above the outflow 
layer were equally if not more striking. Above 15-km 

height, the models did not even agree on the sign 
of the temperature anomaly. In particular, IFS and 
ARPEGE produced a strong cool anomaly (< −3 K; 
incidentally, IFS and ARPEGE were the only spectral 
models), whereas NICAM, SAM, and UM produced 
a warm anomaly. FV3, GEOS, ICON, and MPAS 
were somewhere between the extremes and produced 
a weak cool anomaly (> −1 K). Observational com-
posites generally show a weak cold anomaly above 
the outflow layer (Frank 1977; Komaromi and Doyle 
2017), although instantaneous snapshots of intense 
TCs may also show strong cold anomalies (Komaromi 
and Doyle 2017).

Temperature differences were also found in the 
boundary layer, although less dramatic: NICAM was 
anomalously cool (Fig. 12g), and IFS was anoma-

Fig. 11.  Composite means of azimuthally-averaged radial wind speed in the lowest 2 km from each model in radi-
us-height space. The dashed black line depicts the inflow layer height, here defined as the layer with radial wind  
< −1 m s−1. The composite means were created by averaging over all instances (“snapshots”) where a storm’s vmax 
≥ 33 m s−1.
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lously warm (Fig. 12e). The other models had weak 
cool anomalies or no clear signal. Note that IFS and 
NICAM were polar opposites of each other (NICAM: 
warm in the upper levels, cool in the lower levels; 
IFS: vice versa).

3.5 � Sensitivity of tropical cyclone formation and 
intensity to model resolution and parameterized 
deep convection

In addition to the primary high-resolution simula-
tion, some DYAMOND models produced sensitivity 
runs with lower resolution. For example, ICON 
produced six simulations with mesh spacings of 2.5, 5, 
10, 20, 40, and 80 km, all without parameterized con-
vection (hereafter referred to as ICON no-conv), and 
an additional three simulations with mesh spacings 
of 20, 40, and 80 km with parameterized convection 

(ICON conv). These nine simulations provided an 
opportunity to investigate the sensitivity to model res-
olution and parameterized convection in a controlled 
manner (Figs. 13, 14) .

As for sensitivity to resolution, there was a clear 
inverse relationship, as the number of simulated 
TCs increased when resolution was decreased (Fig. 
13, left column). Concretely, the highest resolution 
run produced the fewest TCs (15; Fig. 13a), and the 
lowest resolution run produced the most TCs (50; Fig. 
13h). In the simulations with intermediate resolution, 
the number of TCs was relatively constant (around 
20). The sensitivity to resolution seemed to be basin 
dependent. Specifically, in the Atlantic and Eastern 
Pacific, the 80-km ICON produced five to six times 
as many TCs as the 2.5-km ICON (Figs. 13a, h), but 
in the Western Pacific, the 80-km ICON produced 

Fig. 12.  Composite means of the TC warm core from each model, computed as the azimuthally-averaged tempera-
ture anomaly with respect to the mean temperature between r = 300 – 700 km. The composite means were created 
by averaging over all instances (“snapshots”) where a storm’s vmax ≥ 33 m s−1.
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only two times as many TCs as the 2.5-km ICON. As 
a consequence, the fractional ratio of storm numbers 
among the ocean basins relative to the global total 
number was much better in the higher resolution runs 

than in the lower resolution runs. In the Indian Ocean, 
the number of events seemed to be insensitive to reso-
lution, and each run produced either one or two TCs.

As for sensitivity to parameterized convection, the 
model produced dramatically fewer TCs once the 
parameterization was turned on (Fig. 13, left vs. right 
column). This effect was most pronounced at lower 
resolution. Specifically, the number of TCs dropped 
from 23 to 17 in the 20-km runs (Figs. 13d, e), from 
21 to 14 in the 40-km runs (Figs. 13f, g), and from 50 
to a mere 9 in the 80-km runs (Figs. 13h, i).

The runs with parameterized convection also fea-
tured substantially lower ACE (Fig. 14). Again, the  
effect was most dramatic at lower resolution, but even 
for an intermediate resolution of 20 km, the ACE 
was reduced by 65 %. In fact, at least for the 20-km 
runs, the reduction in ACE is more dramatic than the 
reduction in TC number, which suggests that convec-
tion parameterization not only reduces the number of 
TCs but also makes TCs weaker and/or shortens their 
lifetime.

Notably, the ICON no-conv runs produced more 
or less the same amount of ACE at all resolutions 
(Fig. 14). Evidently, the lack of intense storms in the 
lower-resolution runs was compensated by a larger 
number of weak storms. An interesting follow-up 
question would be whether this compensation was 
pure luck or whether the amount of background avail-
able potential energy that is converted into kinetic 

Fig. 13.  TC tracks and numbers from various ICON runs (orange) and observations (grey). Left: ICON runs without 
deep convective parameterization, right: ICON runs with deep convective parameterization. The model resolution, 
given in each panel, decreases from top to bottom.

Fig. 14.  ACE from observations (grey) and various 
ICON runs with (light orange) or without (dark 
orange) deep convective parameterization. Model 
resolution decreases from top to bottom. The error  
bars are the lower an upper bounds assuming that 
all vvmax observations have an error of ± 5 m s−1.
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energy by TCs is resolution-independent, such as mean  
precipitation (Hohenegger et al. 2020).

4.  Discussion

One of the drawbacks of global storm-resolving 
models is their immense computational cost, which re-
sults in questions about cost versus benefit. One may, 
for example, postulate that regional high-resolution 
models suffice for TC prediction. Although a practical 
alternative, regional models have disadvantages such 
as determining the ideal domain size and placement 
for a regional domain. More importantly, regional 
domains require lateral boundary conditions, which 
have “serious negative effects” (Warner et al. 1997). 
One of those effects is that errors creep in through 
the boundaries and render longer-range forecasts less 
accurate than those made by global models. In other 
words, regional models are very dependent on the 
global model forcing being “good enough”.

One may also follow Manganello et al. (2012) and 
argue that hydrostatic models with mesh spacings of 
10 km and parameterized convection are sufficient for 
producing realistic TCs. Nonetheless, mesh spacings  
< 5 km are still required for realistically simulating 
vmax and the dynamic processes in the TC inner core 
(e.g., Chen et al. 2007; Gentry and Lackmann 2010; 
Judt and Chen 2010; Gopalakrishnan et al. 2012; 
Davis 2018). Observations and numerical models 
indicate that such processes are important for rapid 

intensification (e.g., Miyamoto and Takemi 2015; Gui-
mond et al. 2016; Judt and Chen 2016). In fact, a case 
study by Fox and Judt (2018) suggested that simulat-
ing extreme cases of rapid intensification requires a 
horizontal grid spacing ≤ 1 km. Since extreme storms 
are highly disruptive to society, being able to reliably 
predict or project intense TCs has great value. 

As a potential easy target for bias reduction in the 
models, we examined whether models with similar 
biases used similar parameterization schemes. For 
example, we investigated whether the models with a 
TKE-like boundary layer parameterization produced 
similar intensity biases versus models that used a 
diagnostic eddy diffusivity. However, no such rela-
tionships were found. In the end, there are variety of 
reasons for the model diversity, including but not lim-
ited to: cloud microphysics, boundary layer processes, 
and the dynamical cores (with differences in effective 
resolution). 

In agreement with other studies, this paper also 
demonstrates that high resolution is necessary yet not 
sufficient for capturing the vmax of TCs. For example, 
ICON was tied with ARPEGE for highest resolution 
(2.5 km), yet ICON struggled to produce intense TCs 
while ARPEGE produced unrealistically strong TCs. 
These intensity biases are likely a consequence of 
the respective model’s surface flux formulation, as 
demonstrated by Fig. 15, which illustrates the surface 
fluxes of momentum and latent heat over a 300 × 300 

Fig. 15.  Momentum flux (top) and latent heat flux (bottom) from ARPEGE (black) and ICON (blue) as a function of 
wind speed. The data are from the same time and domain as the snapshots in Fig. 9. Instead of a raw scatter plot, 
the data are binned and the color saturation is a measure of data points per bin (N) as indicated by the colorbars.
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km area centered on the strongest TC in each model. 
The drag in ICON increased much faster with wind 
speed than that in ARPEGE (Fig. 15a), which means 
that there was a comparatively stronger “break” on the 
surface wind in ICON. ICON also had significantly 
weaker latent heat fluxes for a given wind speed, pro-
viding less “fuel” (Fig. 15b).

The monotonically increasing momentum flux in 
Fig. 15a also indicates that the models did not account 
for the saturation of the drag at wind speeds above 25 
m s−1 (e.g., Powell et al. 2003; Donelan 2004; Chen 
et al. 2013; Curcic and Haus 2020). This shortcoming 
was also found in other models (not shown), and it 
may be the reason why the wind–pressure relationship 
in several models deviated from observations at higher 
winds (Fig. 8). In fact, the wind–pressure relationship 
in IFS seems to improve when drag is computed in a 
more realistic three-way coupled atmosphere–wave–
ocean model (Magnusson et al. 2019).

One implicit assumption underlying this study is 
that the differences in TC characteristics between 
models are due to differences in model formulation. 
Strictly speaking, this assumption is only valid if the 
models simulate the same TCs or if the number of 
TC samples is large enough to produce a realistic TC 
climatology; neither condition is met here. Therefore, 
some of the inter-model differences, such as the differ-
ences in TC structure revealed by Figs. 9 – 12, are due 
in part to limited sampling. Unfortunately, addressing 
this shortcoming by extending the simulations is not 
practical, mainly for the unwieldy computational cost 
and storage requirements. Furthermore, it is difficult 
to say exactly what number of samples would be 
enough to render sampling errors insignificant. We 
acknowledge the weaknesses introduced by sampling 
limitation but argue that the analyses presented in this 
paper are nonetheless insightful for a model inter- 
comparison. 

Lastly, there is much evidence that the storm count 
(and storm-count-related model biases) are sensitive to 
the tracker (Roberts et al. 2020; Vannière et al. 2020). 
This can be an issue when models are compared 
because weak TCs might be over- or under-detected 
depending on the threshold used. We estimated this 
sensitivity by changing the minimum vmax threshold in 
the quality-control process. Specifically, we computed 
ACE and storm count after increasing the minimum 
vmax requirement from 7.5 m s−1 to 15 m s−1 and then to 
32 m s−1. In other words, we first considered all TCs, 
then only TCs of at least tropical storm intensity, and 
finally only TCs of hurricane/typhoon intensity. It 
turns out that ACE is insensitive to these changes in 

the vmax threshold, presumably because ACE is dom-
inated by intense storms that are accounted for under 
all three thresholds. By contrast, the storm count does 
show sensitivity, and the number of TCs drops when 
the threshold is increased from 15 to 32 m s−1. This 
drop is more pronounced for the observations than for 
the simulations; consequently, models that produced 
the right number of TCs under the 7.5 m s−1 threshold 
produced too many TCs under the 32 m s−1 threshold. 
For example, GEOS produced 24 TCs under the 7.5 
m s−1 threshold, the same number as observed. Under 
the 32 m s−1 threshold, GEOS produced 17 TCs, which 
is 7 less than that in the observations. In the end, the 
sensitivity to thresholds in the tracking process indi-
cates that storm count, although often used and intui-
tive, is a sub-optimal metric for evaluating numerical 
models, and insensitive metrics such as ACE are better 
suited for this purpose.

5.  Summary and conclusions

We evaluated nine global storm-resolving models 
that participated in the DYAMOND initiative (Stevens 
et al. 2019) in their ability to simulate TCs. Specifi-
cally, we validated and compared the number of TCs 
each model produced, and the tracks, intensity, size, 
and structure of the TCs. With mesh spacings between 
2.5 km and 7.8 km, the DYAMOND models are the 
highest-resolution global models that have thus far 
been analyzed for this purpose.

The results indicate that global storm-resolving 
models produce realistic TCs and remove longstand-
ing biases known from previous generations of global 
models, such as the difficulty to capture TC intensity. 
However, TCs are strongly affected by model formu-
lation, and essentially all models had biases.

We found that no model did best in all regards, 
although some models did, generally speaking, better 
than others. For instance, GEOS reproduced the 
observed number of TCs3, captured TC size better 
than any other model, and produced a realistic wind- 
pressure relationship. However, GEOS also produced 
too many strong storms and had the highest ACE bias 
of all models (it is unclear if ocean coupling would 
reduce this bias). Other models that did generally well 
were FV3, MPAS, and UM. On the other hand, ICON, 
IFS, and SAM had some issues with size, structure, 
and intensity. For example, ICON and SAM produced 
storms that were too weak. ICON, IFS, and SAM also 
could not capture the wind–pressure relationship as 

3 �This result is conditional and only valid when using the 7.5 
m s−1 minimum vmax threshold for TC tracking.
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realistically as GEOS, FV3, and MPAS; this points 
to deficiencies in the numerical formulations of the 
former models.

We also found that parameterized convection in the 
ICON model strongly reduces the number and inten-
sity of TCs in comparison to simulations without con-
vection parameterization (at least for simulations with 
a mesh spacing > 20 km). This sensitivity highlights 
problems and ambiguities that come with parameteriz-
ing deep convection.

In a nutshell, we believe that the ability to realis-
tically simulate TCs in global models is critical for 
weather and climate prediction. This study demon-
strates that global-storm resolving models are an 
optimal tool to advance TC prediction; however, these 
models should be improved to unleash their full po-
tential. One such avenue for improvement is to update 
the boundary and surface layer parameterizations 
based on results from current research. 
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