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A systematic study of the intrinsic predictability of tropical cyclone (TC) intensity is
conducted using a set of cloud-resolving model ensembles of Hurricane Earl (2010). The
ensembles are perturbed with a stochastic kinetic-energy backscatter scheme (SKEBS) and
started from identical initial conditions. Scale-dependent error growth is investigated by
imposing stochastic perturbations with various spatial scales on the TC and its environment.
Predictability limits (upper bound) are determined by computing the error magnitude
associated with each component of the Fourier-decomposed TC wind fields at forecast
times up to 7 days. Three SKEBS ensembles with different perturbation scales are used
to investigate the effects of small-scale, mesoscale and large-scale uncertainties on the
predictability of TC intensity. In addition, the influence of the environmental flow is
investigated by perturbing the lateral boundary conditions. It is found that forecast errors
grow rapidly on small scales (azimuthal wave numbers > 20), which saturate within 6–12 h
in all four ensembles, regardless of perturbation scale. Errors grow relatively slower on
scales corresponding to rain bands (wave numbers 2–5), limiting the predictability of
these features to 1–5 days. Earl’s mean vortex and the wave number-1 asymmetry are
comparatively resistant to error growth and remain predictable for at least 7 days. Forecast
uncertainty of the mean vortex and wave number-1 asymmetry is greater in the large-scale
perturbation and perturbed lateral boundary condition ensembles. The results from this
case indicate that the predictability of the mean vortex and wave number-1 asymmetry is
predominately associated with the predictability of the large-scale environment, which is
generally much longer than that of convective-scale processes within the TC.
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1. Introduction

Predicting tropical cyclone (TC) intensity remains a major
challenge in spite of efforts and recent advancements in theory,
numerical weather prediction (NWP) and data assimilation (e.g.
Rappaport et al., 2009; Gall et al., 2013). As demonstrated by
the latest National Hurricane Center (NHC) verification report,
the long-term trends of forecast intensity error and forecast skill
have improved only a little over the past few years (Cangialosi
and Franklin, 2014). The lack of significant improvement and
continued struggle to predict TC intensity provokes fundamental
questions about the intrinsic predictability of TCs. While there
have been extensive studies of the physical processes related to
TC intensity uncertainty and predictability, the answer to the
question of what is the upper limit of TC intensity predictability
remains unknown. To assess the intrinsic predictability of

long-lasting TCs over the open ocean, a comprehensive study
of the predictability of TCs within the context of their large-scale
environment is needed. Here we begin with a brief review of
atmospheric predictability and its applications in TCs.

1.1. Limited predictability of atmospheric flow

The concept of limited predictability has been established in
the atmospheric sciences since Edward Lorenz’s ground-breaking
work in the 1960s. Following an earlier study on atmospheric
predictability by Thompson (1957), Lorenz (1969, hereafter L69)
used a relatively simple mathematical model to quantify the scale-
dependent growth of errors. He found that multiscale turbulent
fluid systems characterized by a ‘−5/3’ power spectrum possess an
absolute finite-time predictability barrier due to the rapid upscale
growth of small-scale errors. This result was later replicated in
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similar experiments using more sophisticated turbulence models
(Leith and Kraichnan, 1972; Métais and Lesieur, 1986).

More recently, Rotunno and Snyder (2008, hereafter RS08)
extended the original Lorenz model and showed that it is able to
reproduce the antithetic predictability characteristics associated
with two- and three-dimensional flow regimes: 3-D turbulent flow
with a ‘−5/3’ kinetic energy spectrum has limited predictability,
whereas 2-D flow with a ‘−3’ spectrum possesses unlimited
predictability (i.e. the predictability can be extended to arbitrarily
long time-scales by making the initial error arbitrarily small). This
distinction is of particular importance for Earth’s atmosphere,
since the atmosphere is characterized by a ‘−3’ spectrum at
synoptic and larger scales with a transition to a ‘−5/3’ spectrum
at the mesoscale (Nastrom and Gage, 1985).

An early mesoscale modelling study by Anthes et al. (1985)
suggested that the predictability of mesoscale phenomena
could exceed that suggested by L69, if they were sufficiently
organized/controlled by the large-scale flow. However, the result
of Anthes et al. (1985) has been unrealistically optimistic given that
their experiments were constrained by a relatively small model
domain with unperturbed (i.e. ‘error free’) lateral boundary
conditions. Vukicevic and Errico (1990) noted that regional
model domains need a critical size (e.g. 4500 × 4500 km2) to
allow for error growth on synoptic scales.

Other studies have shown that the predictability of mesoscale
motions can be severely impacted by error upscaling due to the
chaotic behaviour of moist convection (e.g. Zhang et al., 2007).
However, although error saturation occurs quickly on convective
scales, the results of Zhang et al. (2007) also showed that it takes
a few days for small-scale errors to substantially influence the
predictability of the more slowly evolving synoptic scale.

1.2. Predictability of tropical cyclones

TCs are multiscale in nature. Complex physical processes over
a wide range of temporal and spatial scales are known to affect
TC structure and intensity, which make it difficult to assess error
growth and intrinsic predictability. On one hand, Emanuel et al.
(2004) and others have emphasized the large-scale environmental
control of TC intensity through vertical wind shear (e.g. Black
et al., 2002; Chen et al., 2006; Tang and Emanuel, 2012), the
upper ocean temperature, and air–sea interactions (Emanuel,
1986; Rotunno and Emanuel, 1987; Chen et al., 2007, 2013;
Lin et al., 2013). On the other hand, a number of studies
have focused on internal processes and their impact on TC
intensity (e.g. Shapiro and Willoughby, 1982; Rozoff et al.,
2009; Rogers, 2010). For example, secondary eyewall formation
and eyewall replacements are important processes affecting TC
intensity. Some studies hypothesized that TC internal processes
such as vortex Rossby waves may explain secondary eyewall
formation (e.g. Montgomery and Kallenbach, 1997; Wang, 2002).
However, using observations from the Hurricane Rainbands
and Intensity Experiment (RAINEX) and a high-resolution,
full-physics regional model, Judt and Chen (2010) found that
inner-core convective processes alone were not able to explain the
observed intensity and structure changes in Hurricanes Katrina
and Rita (2005). The question of internal or environmental
control of TC intensity remains at the centre of TC predictability.

Studies on predictability of TC intensity have been somewhat
limited. TC case-studies that focused on the evolution of
forecast uncertainty have used ensemble spread as a proxy for
predictability, while other studies relied on idealized models with
periodic boundary conditions. Using ensembles with perturbed
initial conditions, Sippel and Zhang (2008, 2010) and Zhang
and Sippel (2009) assessed the impacts of uncertainties in
the atmospheric moisture distribution and the evolution of
mesoscale convective systems (MCSs) on TC forecast uncertainty
and predictability. They found that TC genesis and subsequent
intensification periods are governed by chaotic interactions
between MCSs in the pre-genesis stage, and concluded that

the limited predictability of MCSs creates inherent difficulties
to accurately predict developing TCs. Hakim (2013) and Brown
and Hakim (2013) studied the intrinsic predictability of TC
winds using idealized simulations of a mature TC in statistical
equilibrium. Results from their idealized simulations indicate that
the intrinsic predictability limit of the near-surface winds in TCs is
about 2–3 days. However, Brown and Hakim (2013) also pointed
out that they were not able to determine the effects of a realistic
environment on TC predictability since they used a prescribed,
steady environment and periodic boundary conditions. Zhang
and Tao (2013) used idealized simulations with a prescribed,
variable environment, and found that the TC intensity prediction
was strongly influenced by parameters such as vertical wind shear.
Tao and Zhang (2014) showed that the uncertainty is due to effects
of shear on the intensity and spatial distribution of convection
in the intensifying TC. They found substantial uncertainty in the
TC evolution, which was heuristically interpreted as a relatively
short predictability limit of TC intensity.

Another challenge in TC intensity predictability is the specific
metric used to quantify TC intensity. Traditionally, TC intensity
is defined as the maximum wind speed at 10 m height anywhere
within a TC∗. However, the peak surface wind speed at a certain
point in time and space does not solely represent the magnitude
of the overall circulation, since it is also affected by small-scale
turbulent motions within a TC. Vukicevic et al. (2014) pointed out
that the peak wind metric is not optimal for studying TC intensity
and predictability due to the turbulent nature of the TC wind field.

In this study, we assess the intrinsic upper limit of TC inten-
sity predictability using high-resolution cloud-resolving ensemble
forecasts. Our predictability approach explicitly takes the multi-
scale nature of TC winds into account, and we quantify the scale-
dependent error growth in the surface wind field from convective-
scale features to the TC vortex scale. Hurricane Earl (2010) was
chosen for this study because it was an archetypical long-lived
Cape-Verde type major hurricane. The model was configured with
two vortex-following domains and a large outer domain encom-
passing most of the western North Atlantic, which enabled the TCs
to interact freely with the large-scale environment. The stochas-
tic kinetic-energy backscatter (SKEBS: Shutts, 2005; Berner et al.,
2009, 2011) algorithm was used to perturb the model ensembles
with spatially and temporally correlated patterns of noise.

This article is organized as follows: section 2 contains a
description of the ensemble method and error growth analysis
technique. Section 3 presents a synopsis of Hurricane Earl (2010),
and the ensemble predictions of Earl are evaluated in section
4. The results of the scale-dependent error growth analysis
and predictability analysis are presented in section 5. Section 6
describes the effects of lateral boundary condition perturbations
on error growth and TC intensity predictability. The source of
predictability is discussed in section 7, and section 8 summarizes
the key points of this study.

2. Methodology

2.1. Model set-up

The predictability analysis was performed with output from
four different SKEBS ensembles, which were generated with
the Weather Research and Forecasting (WRF) – Advanced
Research WRF model (WRF-ARW version 3.4, hereafter WRF for
simplicity: Skamarock et al, 2008). The favourable track record of
WRF with regard to TC intensity prediction was documented in
Davis et al. (2008, 2010).

All ensemble members were initialized with identical analysis
fields from the Global Forecasting System (GFS) valid at 0000

∗The officially assessed ‘maximum 1-minute sustained wind speed’ is a
subjective estimate by NHC forecasters based on available observations. This
quantity cannot be measured directly, nor can it be represented by NWP
models (Vukicevic et al., 2014).
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Figure 1. SKEBS wind speed tendency perturbations on the outer model domain from (a) SKEBS-syno, (b) SKEBS-meso and (c) SKEBS-conv. (d)–(f) are the same,
but on the innermost moving domain. Moving domains in (a)–(c) are indicated by black rectangles.

UTC on 27 August 2010, when Earl was a weak tropical storm with
peak winds of 21 m s−1 (40 kn) while located in the central tropical
Atlantic. The ensembles were integrated for 7 days (168 h) using
lateral boundary conditions (updated at 6-hourly intervals) from
the deterministic 0000 UTC 27 August 2010 GFS forecast. Each
member was set up with the stationary outer domain covering
most of the western Atlantic and two nested vortex-following
grids tracking the TC’s centre (the domain set-up is displayed
in Figure 1(a–c)). The outer domain had dimensions of 450 ×
350 grid points with a grid spacing of �x1 = 12 km, covering
an area of 5400 km × 4200 km. These dimensions were large
enough to contain the TC during the entire 7-day forecast window
and adequate to not overly constrict error growth on synoptic
scales (Vukicevic and Errico, 1990). The two vortex-following
domains had 250 × 250 and 331 × 331 grid points with grid
spacings of �x2 = 4 km and �x3 = 1.33 km, corresponding to
areas of 1000 km × 1000 km and 439 km × 439 km, respectively.
The dimensions of the innermost domain ensured that the TCs’
inner cores and most of their rain bands were inside the domain
with �x3 = 1.33 km. There were 44 levels in the vertical, with
a relatively higher vertical resolution in the boundary layer.
In the outer domain with �x1 = 12 km, convective processes
were parametrized with the Kain–Fritsch cumulus scheme while
convection was treated explicitly on the two vortex-following
grids. The effect of moist physical processes was simulated with
the WRF Single-Moment 6-Class Microphysics Scheme (WSM6:
Hong and Lim, 2006), planetary boundary-layer processes were
parametrized using the Yonsei University scheme (YSU: Hong
et al., 2006), and an air–sea flux parametrization based on
Donelan et al. (2004) and Garratt (1992) was used to account
for momentum and enthalpy fluxes at the sea surface (option
ISFTCFLX = 2 in the WRF name list).

2.2. The stochastic perturbation method

A stochastic kinetic-energy backscatter scheme (SKEBS: Shutts,
2005; Berner et al., 2009, 2011) was used to add stochastic,

small-amplitude perturbations to the rotational component of
the horizontal wind and the potential temperature tendency
equations at each time step. The SKEBS technique provides
a number of advantages over perturbation techniques that only
perturb the initial state. For example, the continuous perturbation
of the model fields counteracts the ‘error sweeping effect’ in
regional models with unperturbed boundary conditions (Errico
and Baumhefner, 1987). Furthermore, SKEBS provides an elegant
and easy way to create scale-dependent perturbations.

For the purpose of the current study, the SKEBS approach
can be simply viewed as adding random perturbations with
prescribed spatial and temporal decorrelations. A random pattern
is created in spectral space with respect to the dimensions of the
quadrilateral WRF domain, and each wave number is separately
evolved as a first-order autoregressive process. Subsequently, the
pattern is transformed back to grid-point space and added to
the u, v and θ tendency equations. Temporal correlations are
given by the autoregressive parameter, while the perturbation
wave-number spectrum determines the spatial correlations. To
ensure homogeneity, the largest possible perturbation scale is
given by the shorter of the two lateral dimensions of the domain
(either east–west or north–south). In the experiments described
here, the maximum perturbation scale is thus determined
by the north–south dimension of the outer domain (i.e.
4200 km). The smallest possible perturbation scale is identical
to the Nyquist frequency 2*�x, where �x denotes the grid
spacing.

As default, the stochastic pattern is generated on the parent
domain and interpolated to all nested domains. This limits
the smallest perturbation scale on the nested domains to
2*�x1 = 24 km. To perturb smaller scales on the higher-
resolved nested domain, the algorithm was changed in order
to generate stochastic patterns on each domain independently.
With the modified algorithm, it was possible to create SKEBS
perturbations as small as 2*�x3 = 2.67 km on the innermost
domain.
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Table 1. List of SKEBS ensemble experiments.

SKEBS-syno SKEBS- SKEBS- SKEBS-
-PertBdy syno meso conv

Perturbation scale (km) 500–4200 500–4200 24–500 2.67–12
Domains perturbed 1-2-3 1-2-3 1-2-3 3
Perturbed boundaries Yes No No No

The amplitude of the stochastic perturbations was chosen
as the default in WRF. Originally, it was tuned to provide more
reliable ensemble spread in the midlatitudes of the WRF mesoscale
ensemble (Berner et al., 2011, 2015). Berner et al. (2008, 2009)
reported that ECMWF predictions in the Tropics were impacted
even more favourably than in the midlatitudes, and we assume
that the WRF SKEBS perturbations are appropriate for tropical
applications. The perturbations used in this study have a random
phase vertical structure with westward tilt.

Additionally, we extended the stochastic perturbations to not
only perturb the interior of the domain, but also the lateral
boundary conditions. Perturbing the lateral boundary conditions
simulates uncertainty associated with the flow through the
boundaries, which in this case is coming from the deterministic
GFS model run. SKEBS boundary condition perturbations are
added at every model time step and ease the limitations of a
regional model with respect to prescribed forcing through the
lateral boundaries.

2.3. Experimental set-up

All experiments were initialized at 0000 UTC 27 August 2010 with
the same GFS initial conditions. An unperturbed CNTL forecast
and four different SKEBS ensembles were generated to address
the question of scale-dependent forecast error growth and the
role of lateral boundary condition uncertainty. Each ensemble has
20 members. The spatial scales of the SKEBS perturbations range
from synoptic-scale (O(1000 km)) to convective-scale (O(1 km)),
spanning a range of 3 orders of magnitude. A listing of the four
ensembles with their respective SKEBS characteristics is given in
Table 1.

Figure 1 shows a typical example of the SKEBS perturbation
patterns. The upper panels display wind speed tendency
perturbations on the outer domain, the lower panels zoom in on
the innermost grid (the vortex-following domains are indicated
by black squares in Figure 1(a–c)). The distinct differences
in perturbation scale between SKEBS-syno (Figure 1(a,d)),
SKEBS-meso (Figure 1(b,e)) and SKEBS-conv (Figure 1(c,f)) are
strikingly evident. Note that SKEBS-conv features perturbations
on the innermost domain only. The amplitude of the noise
is miniscule, demonstrating that SKEBS perturbations in this
set of experiments can be interpreted as ‘intrinsic’ stochastic
noise. Wind speed tendency perturbations do not exceed
1.8·10−3 m s−2 (Figure 1), while potential temperature tendency
perturbation patterns are on the order of ±10−9K s−1 (not
shown).

2.4. Scale-dependent error growth and predictability limits

Error growth was quantified using the kinetic energy of the
10 m wind. Two metrics are important: the ensemble mean
kinetic energy and the ensemble mean error energy, which can be
interpreted as a measure of uncertainty. We followed the approach
of L69 and RS08, where the predictability limit is defined as the
forecast time at which the error saturates.

The hourly model output of the zonal and meridional wind
was interpolated to a polar coordinate grid with r = 0–300 km,
dr = 2.0 km and dθ = 1.0◦ to obtain the surface wind speed field
V(r, θ) of the TCs. At each radius, the V fields were Fourier-
decomposed in the azimuthal direction into wave number
0–180 components. For mathematical simplicity, the Fourier

decomposition-based scale analysis only distinguishes scales in
the azimuthal direction, and does not take radial variations into
account. Despite this simplification, the wave-number fields can
be thought of as approximately representing distinct physical
structures and different ‘scales of motion’ in TCs (Figure 2). For
example, wave number 0 represents the mean vortex, and wave
number 1 the vortex-scale asymmetry. The structure of wave
numbers 2–5 resembles TC rain bands, and these components
will be referred to as ‘rainband-scale’. Azimuthal wave numbers
≥6 are associated with smaller mesoscale and convective features
in the TC circulation. The relationship between wave numbers
in polar coordinates and physical scale is a linear function of
radius (for example, an azimuthal wave number-5 feature has
a linear scale of 378 km at r = 300 km, and a linear scale of
188 km at r = 150 km). Since the polar grid has a maximum
dimension of rmax = 300 km, the mean radius of r = 150 km
is appropriate for approximating the physical scale of azimuthal
wave numbers in an average sense. Rainband-scale features are
thus roughly representing scales of 200–500 km in physical space,
while small-scale circulations (wave numbers >50) are associated
with scales <20 km.

Scale-dependent predictability limits were determined by
computing the ratio of ensemble mean error kinetic energy to
ensemble mean kinetic energy at hourly forecast time intervals.
Both quantities are functions of azimuthal wave number k (or
‘scale’, Figure 2). The kinetic energy per wave number k is given
by

E(k) = 1

2

∫ 300 km

r=0
|V̂(k, r)|2rdr, (1)

where V̂(k, r) is the Fourier component of the wind field associated
with wave-number component k(here 0 ≤ k ≤ 180). The ensemble
mean kinetic energy K(k), or in short the mean energy, is then
defined as

E(k) = 1

20

20∑
m=1

K(m, k), (2)

where the summation is over all ensemble members m (here 1
≤ m ≤ 20).

The ensemble mean error kinetic energy E(k), or in short the
error energy, is a metric that quantifies the uncertainty. E(k)
is derived from the error fields e, where e is the wind speed
difference field between any two ensemble members. According
to the combination formula

(
20
2

)
= 20!

2!(20 − 2)!
= 190, (3)

there are 190 possible combinations between the 20 members
and therefore 190 error fields. Each error field e was Fourier-
decomposed, yielding the wave-number components of the error
fields, ê(k). The error energy per wave number is then given by

E(k) = 1

2

∫ 300 km

r=0
|ê(k, r)|2rdr, (4)

similarly to K(k), we now define the ensemble mean error energy
E(k) as the average of all error fields E,

E(k) = 1

190

190∑
l=1

E(l, k). (5)

Since the ensemble was started from identical initial conditions,
E(k) = 0 at t = 0. For small t, the error between any two members
remains small: E(k) << K(k) . By computing the ratio of error
energy E(k) to energy K(k) over time we can assess the growth of
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Figure 2. Azimuthal wave number 0, 1, 2, 3, 5, 7, 10, 15, 20, 50, 70, 100 components of the surface wind field. Wave number 0 represents the mean vortex, wave
number 1 the vortex scale asymmetry, while wave numbers 2–5 resemble TC rain bands. Higher-order wave numbers are associated with smaller mesoscale and
convective-scale elements. The top-left inset is the sum of all wave numbers and equal to the original wind field. Note that the range of the colour bar changes in the
various panels.

errors as a function of wave number k. E(k) is bounded, and L69
stated that ‘if there is no predictability at sufficiently long range,’
E → 2K. This behaviour is referred to as error saturation, and
allows for determining the scale-dependent predictability limit of
the Fourier-decomposed TC’s wind field. Wave number k loses
predictability when

E(k) = 2 · K(k). (6)

The factor 2 in the above equation arises from basic statistics
and ensemble theory and can be intuitively explained in the
following way: in statistical terms, a forecast is wrong about the
correct pattern with variance E. But there will be an additional
penalty if a forecast adds an incorrect pattern that also has
variance E. The total error would then be 2E. At this point, the
error saturates, cannot grow any further and the total loss of
information may be interpreted as a loss of predictability (‘the
signal gets wiped out by the noise’).

It is convenient to substitute, E(k) = 2 · E∗(k) so that the factor
2 in Eq. (6) disappears. In this case, a loss of predictability of wave
number k occurs when the error to energy ratio reaches unity:

E∗(k)

K(k)
= 1. (7)

Due to effects of noise and sampling fluctuations, Eqs (6)
and (7) are not exact equations, and for practical purposes, we
define a loss of predictability when the error ratio reaches 95% of
its saturation value (similar to Li and Ding (2011), who used a
90% threshold).

3. Synopsis of Hurricane Earl (2010)

Hurricane Earl (2010) was a long-lasting tropical cyclone with
a typical major hurricane evolution over the Atlantic Ocean,
including a period of rapid intensification. It did not make
landfall until reaching Nova Scotia, Canada, more than 10 days
after its formation, which makes it an ideal candidate for exploring
the upper limit of TC predictability.

The cyclone formed from an African Easterly Wave and was
declared a tropical depression by NHC at 0600 UTC on 25 August
2010 as it moved westward, steered by the subtropical ridge.
Earl reached tropical storm strength at 1200 UTC 25 August
2010 and rapidly intensified on 29–30 August to a category-4
hurricane (59 m s−1 or 115 kn) while passing north of the Virgin
Islands and Puerto Rico. Shortly after, the storm began an eyewall
replacement cycle that halted the intensification process. A slight
weakening was observed on 1 September, possibly due to an
increase in southwesterly shear (Cangialosi, 2010). After the shear
abated, the hurricane reintensified while moving northwestward
and reached its peak intensity around 0600 UTC on 2 September
2010 with a maximum wind speed of 64 m s−1 (125 kn). Earl
began to turn to the north and started to recurve just south
of Cape Hatteras. Weakening commenced as the storm started
to interact with the midlatitude flow and began to undergo
extratropical transition. Earl made landfall on Nova Scotia as
a weak hurricane, and was finally designated an extratropical
cyclone on 5 September 2010. The time period we chose for
this study, 0000 UTC 27 August–0000 UTC 3 September 2010,
captures Earl’s rapid intensification, its mature stage including
the temporary weakening, and the beginning of its extratropical
transition phase.
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Figure 3. Best-track position estimates (black) and 7-day forecast tracks of Hurricane Earl (2010) from (a) SKEBS-syno, (b) SKEBS-meso, and (c) SKEBS-conv
ensembles. The control forecast (CTRL) is in magenta.

Figure 4. Same as in Figure 3, except for 7-day forecast of (a–c) maximum wind speed and (d–f) minimum sea-level pressure. Ensemble standard deviation values
are printed in red above the x-axis at 24 h intervals.

4. Ensemble predictions of Hurricane Earl

4.1. Track uncertainty

Seven-day ensemble track forecasts of Earl for the period 0000
UTC 27 August–0000 UTC 3 September 2010 are shown
in Figure 3(a) (SKEBS-syno), Figure 3(b) (SKEBS-meso) and
Figure 3(c) (SKEBS-conv). The CTRL track (magenta) and
Earl’s 6-hourly best-track positions are overlaid. Generally, the
ensembles correctly predicted Earl’s westward motion and its
recurvature in the western North Atlantic. A modest eastward
bias is noticeable, and the storm’s initial turn to the northwest
occurs earlier in the forecasts than in reality. Despite this bias, the
overall agreement between track forecasts and observations shows
that the environmental steering flow was reasonably well captured.

In all three ensembles, track uncertainty increases monotoni-
cally with forecast time. Comparing the track uncertainty among
the three ensembles reveals that SKEBS-syno exhibits the largest
amount of uncertainty (Figure 3(a)), since the synoptic-scale
stochastic perturbations project directly onto flow features that
control the TC’s track. SKEBS-meso exhibits less spread (Fig-
ure 3(b)), and the forecast tracks in SKEBS-conv have the least
variability (all members are tightly clustered around the CTRL
track, Figure 3(c)). The lack of track uncertainty in SKEBS-conv

indicates that perturbing the TC on convective scales does not
lead to an effective upscale error growth cascade, and uncertain-
ties in the steering flow during the 7-day forecast period remain
minimal.

4.2. Intensity uncertainty

Maximum wind speed (Figure 4(a–c)) and minimum sea-level
pressure forecasts (Figure 4(d–f)) show that the SKEBS ensembles
captured the intensity evolution of Hurricane Earl, but somewhat
overpredicted its intensity. Earl’s gradual intensification period
(27–29 August 2010, corresponding to forecast time t = 0–48 h)
was followed by a period of rapid intensification†, (29–31
August, t = 48–96 h), and virtually all ensemble TCs intensified
from tropical storms (vmax < 32 m s−1) to major hurricanes
(vmax > 50 m s−1). After rapid intensification the hurricanes
reached a mature state and experienced only minor intensity
fluctuations between 31 August and 2 September (t = 96–144 h).
Subsequently, the TCs weakened as they began extratropical
transition (2–3 September, t = 144–168 h).

†Rapid intensification is commonly defined as an increase in the maximum
wind of at least 15.4 m s−1 (30 kn) during a 24 h period (Kaplan and DeMaria,
2003).
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An intriguing characteristic of the ensembles is that the highest
amount of forecast uncertainty is associated with the period
of rapid intensification during forecast days 2–4 (t = 48–96 h,
Figure 4). Nearly all members of the three ensembles undergo
rapid intensification, however, at very different timings. In
contrast to the monotonically increasing track uncertainty
(Figure 3), the intensity uncertainty decreases after t = 96 h,
indicating that error growth impacts TC intensity differently
than TC track. The standard deviations of the ensemble peak
wind (σw) and sea-level pressure (σp) forecasts were calculated
at 24 h intervals to provide a more quantitative assessment of
uncertainty (red values in Figure 4). In SKEBS-syno (Figure 4(a)),
which has the largest intensity spread, the earliest storm starts
rapid intensification around t = 36 h, while some members do
not intensify rapidly until t = 84 h. Uncertainty is maximum
at t = 72 h, when σw = 9.5 m s−1. Figure 4(b) and (c) show a
similar behaviour for SKEBS-meso and SKEBS-conv, where the
maximum uncertainty also occurs during the rapid intensification
period. However, the maximum standard deviations in SKEBS-
meso (σ w = 8.9 m s−1 at t = 96 h) and SKEBS-conv (σw = 7.2
m s−1 at t = 96 h) are smaller compared to SKEBS-syno.

Intensity forecast uncertainty decreases significantly after all
storms reach a quasi-steady state with little intensity fluctuations,
and σ w reduces by 60–65% between t = 72 and 120 h. None of
the members correctly predicted the short period of weakening
and reintensification around 1 September 2010 (t = 120 h) that
was associated with an eyewall replacement cycle and a temporary
increase in wind shear. The ensembles did, however, capture Earl’s
weakening as the storm started to lose tropical characteristics, and
the intensity forecast uncertainty increases again in SKEBS-syno
and SKEBS-meso when the ensemble TCs begin to interact with
a midlatitude trough. During the final 24 h, σ w increases from
3.9 to 6.1 m s−1 in SKEBS-syno (Figure 4(a)), and from 2.5 to 3.3
m s−1 in SKEBS-meso (Figure 4(b)). The uncertainty evolution
in SKEBS-conv is qualitatively different during the final 24 h.
The spread continues to shrink between t = 144–168 h and σw

decreases from 2.2 to 2.0 m s−1 (Figure 4(c)). Convective-scale
perturbations are evidently not able to significantly increase the
uncertainty in the large-scale environment, which controls the
intensity uncertainty during the extratropical transition period
(this result is consistent with the lack of track uncertainty in
SKEBS-conv, Figure 3(c)).

The distinct uncertainty differences between the ensembles are
more pronounced in the minimum sea-level pressure forecasts
(Figure 4(d–f)), which is a more integrated metric of TC
intensity. During the rapid intensification period (t = 48–96 h),
σp increases from 6.0 to 13.3 hPa in SKEBS-syno, from 4.7 to 15.2
hPa in SKEBS-meso and from 5.7 to 9.9 hPa in SKEBS-conv. The
relative uncertainty minimum after the intensification period is
again most distinct in SKEBS-conv. At t = 168 h, σp collapses to
a very small value of 2.2 hPa in SKEBS-conv (Figure 4(f)), while
it is twice this value in SKEBS-meso (σp = 4.0 hPa, Figure 4(e))
and almost three times as large in SKEBS-syno (σp = 7.5 hPa,
Figure 4(d)).

In summary, all three SKEBS ensembles have significant
uncertainty during the rapid intensification period, and minimum
uncertainty during peak intensity. SKEBS-conv generally has less
uncertainty than the other ensembles. A noteworthy difference
between SKEBS-syno and SKESB-conv is the lack of ensemble
spread in SKEBS-conv between t = 144 and 168 h, indicating
reduced uncertainty during extratropical transition.

5. Scale-dependent error growth and its impact on TC
predictability

The uncertainty evolution presented in the previous section is
a manifestation of error growth in the SKEBS ensembles, and
motivates a deeper understanding of how error growth leads
to uncertainty and limited predictability. Error growth begins
immediately after the first time step. A snapshot of the error

Figure 5. Ensemble mean kinetic energy K(k) (blue) and error E∗(k) (red) spectra
from SKEBS-syno valid at t = 6 h. The dashed black line represents a theoretical
energy spectrum with a −3 slope, while the solid black line is the same for a
−5/3 spectrum.

growth process at t = 6 h from SKEBS-syno is shown in Figure 5,
where error energy E∗(k) is in red and mean energy K(k) in blue.
The wave-number insets below the x-axis help to visualize the
scales associated with different wave numbers k. Error growth
at early times is not entirely consistent with the idealized results
from L69 and RS08, and more similar to what Mapes et al. (2008)
described as ‘up-magnitude’ growth. From the beginning, errors
grow at all scales simultaneously, which is in contrast to L69’s
original study where the large-scale errors remain zero until the
smaller scales saturate. Apparently the SKEBS procedure and
error projection from small onto larger scales are growing large-
scale errors faster than upscale propagation through successive
saturation alone. Despite the error growing on all scales, the
error ratio increases more rapidly on smaller scales because of the
smaller mean kinetic energy, and saturation occurs after a mere
couple of hours. At t = 6 h, the error in SKEBS-syno has saturated
at all scales corresponding to wave numbers ≥30, meaning that
features with roughly 30 km spatial scale have lost predictability
(Figure 5). The black lines in Figure 5 show theoretical power
spectra with slopes of −5/3 (solid) and −3 (dashed). Note that
the mean energy of the largest scales (wave numbers 1–5) follows
a power law with a slope closer to −3, while the spectrum in
higher wave numbers behaves more like −5/3.

Figure 6 displays E∗(k) and K(k) at t = 24 h from SKEBS-
syno (Figure 6(a)), SKEBS-meso (Figure 6(b)) and SKEBS-
conv (Figure 6(c)). During the 18 h separating Figures 5
and 6(a), the error in SKEBS-syno has increased at all wave
numbers, and the saturation point has spread upscale to wave
number 7. SKEBS-meso and SKEBS-conv feature similar error
saturation characteristics, but have smaller wave number-1 error
magnitudes. By t = 72 h, the error has saturated at all scales up to
wave number 4 in SKEBS-syno and SKEBS-meso (Figure 7(a,b)),
whereas error saturation in SKEBS-conv is only observed up
to wave number 7 (Figure 7(c)). The smaller error magnitudes
in SKEBS-conv (Figure 7(c)) are consistent with the smaller
amount of intensity uncertainty (Figure 4(c,f)). By t = 120 h,
the mean energy of wave number 0 has increased drastically
by almost 100% in all ensembles (Figure 7(d–f)), but the wave
number-0 error magnitude has decreased. Since all members
have intensified into mature storms by t = 120 h (Figure 4),
the reduced wave number-0 error is a manifestation of the
diminished mean-vortex uncertainty. Towards the end of the
forecast, the wave number-0 error increases again due to vortex
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Figure 6. The same as Figure 5, but for (a) SKEBS-syno, (b) SKEBS-meso and (c) SKEBS-conv at forecast hour t = 24 h. Only azimuthal wave numbers 1–20 are
shown.

Figure 7. The same as Figure 5, but for (a,d,g) SKEBS-syno, (b,e,h) SKEBS-meso and (c,f,i) SKEBS-conv, valid at forecast hour (a–c) t = 72 h, (d–f) t = 120 h, and
(g–i) t = 168 h. The x-axis has a linear scale, and only azimuthal wave numbers 0 – 10 are shown.
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Table 2. Ratio of error energy E∗ to mean energy K for forecast times t = 24, 48, 72, 96, 120, 144 and 168 h and wave numbers k = 0, 1, 2, 5 and 10 in SKEBS-syno,
SKEBS-meso and SKEBS-conv.

SKEBS-syno SKEBS-meso SKEBS-conv

WN0 WN1 WN2 WN5 WN10 WN0 WN1 WN2 WN5 WN10 WN0 WN1 WN2 WN5 WN10

0–24 h 0.01 0.06 0.38 0.96 1.01 <0.01 0.05 0.26 0.94 1.01 <0.01 0.04 0.27 0.91 0.95
24–48 h 0.01 0.19 0.93 1.01 1.04 0.01 0.13 0.92 0.98 1.01 0.01 0.12 0.79 0.96 1.02
48–72 h 0.02 0.31 0.81 0.98 1.00 0.02 0.21 0.71 1.01 1.02 0.01 0.26 0.65 0.98 1.01
72–96 h 0.02 0.42 0.88 1.02 1.02 0.02 0.41 0.83 1.00 1.02 0.01 0.42 0.88 0.99 1.01
96–120 h 0.02 0.52 0.97 1.03 1.02 0.01 0.44 0.90 1.00 1.01 <0.01 0.47 0.84 0.98 1.00
120–144 h 0.01 0.43 0.96 1.03 1.03 <0.01 0.51 0.98 1.02 1.02 <0.01 0.53 0.91 1.02 1.03
144–168 h 0.01 0.56 0.82 1.03 1.03 <0.01 0.51 0.80 1.03 1.02 <0.01 0.50 0.58 1.02 1.02

When the ratio is ≥0.95 (loss of predictability), values are printed in bold face.

Figure 8. Error to energy ratio (shading) of azimuthal wave numbers 0–5 as a function of forecast time from (a) SKEBS-syno, (b) SKEBS-meso and (c) SKEBS-conv
ensembles.

scale uncertainty in response to the beginning of extratropical
transition (Figure 7(g–i)). Note that wave numbers 0 and 1 never
suffer from error saturation in any of the ensembles throughout
the 168 h forecast period (Figure 7(a–i)). This is one of the most
remarkable predictability results of this study, and it suggests that
the vortex-scale circulation in Hurricane Earl has an intrinsic
predictability of at least 7 days. It should be noted that maximum
wind speed uncertainty may be substantial even if the wave
number-0 and 1 wind field components are predictable (Figure 4).

The nature of the logarithmic scale in Figure 7 makes it
difficult to directly compare error ratios between the ensembles.
A quantitative overview of the error ratio evolution for wave
numbers 0, 1, 2, 5 and 10 is shown on Table 2 to better highlight
the similarities and differences between the ensembles. Table 2
lists the maximum error ratios occurring within seven 24 h
intervals (values are printed in bold face when the value exceeds
0.95). Representative of smaller scales, wave number 10 loses
predictability before t = 24 h in all ensembles. The wave number-
5 error saturates at t = 17 h in SKEBS-syno, t = 29 h in SKEBS-
meso and t = 35 h in SKEBS-conv, demonstrating that the wave
number-5 predictability is dependent on perturbation scale. Wave
number 2 behaves similarly, and error saturation occurs between
t = 96–120 h in SKEBS-syno and t = 120–144 h in SKEBS-meso,
but never in SKEBS-conv, implying that wave number-2 rain-
band features do not lose predictability in SKEBS-conv.

In contrast to the oscillating wave numbers-2–5 error ratios,
which are partly due to differences in mean energy, the
wave number-1 error ratio increases more monotonically. In
SKEBS-syno, the maximum wave number-1 error ratio (0.56)

occurs late in the forecast between t = 144–168 h, and is about
10% larger than the same value in SKEBS-meso and SKEBS-
conv. Considering that the wave number-1 asymmetry is a
manifestation of shear and/or TC forward motion, a larger wave
number-1 error ratio is indicative of increased uncertainty in
the environmental flow. This result is consistent with the larger
track and intensity uncertainty in SKEBS-syno (Figures 3 and 4),
and suggests that the environmental uncertainty is affected more
strongly by directly perturbing the large scales (SKEBS-syno) than
by upscale error propagation (SKEBS-meso and SKEBS-conv).
The error ratio of wave number 0 generally remains very small
due to the immense mean energy associated with the well-defined
vortex circulations, and never grows beyond 0.02. Nevertheless,
the wave number-0 error ratio in SKEBS-syno exceeds that of
SKEBS-conv at some forecast times by at least a factor of 2,
indicating that the mean vortex circulation in SKEBS-syno has
significantly more uncertainty.

Figure 8 gives a visual representation of the error ratio evolution
for wave numbers 0–5. SKEBS-syno (Figure 8(a)) features a
larger area filled with orange and red colours, indicating higher
uncertainty and shorter predictability of wave numbers-2–5
features in comparison with SKEBS-meso (Figure 8(b)) and
SKEBS-conv (Figure 8(c)). On scales smaller than wave number
5, error ratios do not show significant differences between the
ensembles (not shown). Wave number-0 error ratios remain very
small, but their magnitudes increase slightly between t = 48–72 h,
and feature a relative maximum around t = 72 h (Figure 8,
Table 2) due to increased vortex-scale uncertainty during the
rapid intensification period (Figure 4).

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 43–57 (2016)



52 F. Judt et al.

Figure 9. (a) Predictability limits as a function of azimuthal wave number k for
SKEBS-syno (black), SKEBS-meso (cyan) and SKEBS-conv (magenta). (b) The
same, but on a linear x-scale and only showing wave numbers 0–10. Note that no
values are plotted when the predictability limit is >168 h (wave numbers 0 and 1
in SKEBS-syno and SKEBS-meso, wave numbers 0, 1 and 2 in SKBES-conv).

In summary, different SKEBS perturbation scales affect the
error magnitude on larger TC scales (wave numbers < 5), but
do not significantly alter the error growth characteristics at small
scales. The results presented in the previous paragraphs can be
condensed to (i) bring out the scale-dependency of predictability
limits and to (ii) illustrate the relationship between perturbation
scales and the predictability of rainband-scale features with wave
numbers <5 (Figure 9). In Figure 9, predictability limits are
displayed as a function of wave number. All scales associated
with wave numbers >7 lose predictability before t = 24 h
independent of perturbation scale (Figure 9(a)). Figure 9(b)
zooms in on wave numbers 0–10. No values are plotted for wave
numbers 0 and 1 (SKEBS-syno, SKEBS-meso) and wave numbers
0, 1 and 2 (SKEBS-conv), since these wave numbers never lose
predictability. Rainband-scale features have varying predictability
limits that clearly depend on perturbation scale. For example,
wave number 3 remains predictable for slightly over 24 h
in SKEBS-syno, but for almost 96 h in SKEBS-meso and
SKEBS-conv. The transitioning from relatively short to long
predictability occurs between wave numbers 2 and 5, which
approximately corresponds to the scales where the slope of the
energy spectrum changes from −3 to −5/3. Wave numbers 2 and
5 roughly correspond to physical scales of 500 and 200 km here,
consistent with Nastrom and Gage (1985).

6. Effects of lateral boundary condition on TC predictability

A remaining question is whether the predictability of wave
numbers 0 and 1 can be attributed to the lack of lateral
boundary condition uncertainty, which is a general limitation
of regional models (e.g. Errico and Baumhefner, 1987; Vukicevic
and Errico, 1990). To investigate the impact of lateral boundary
condition uncertainty, the SKEBS-syno-PertBdy ensemble was

Figure 10. SevendSay forecasts of (a) track, (b) intensity, and (c) minimum
sea-level pressure from SKEBS-syno-PertBdy.

created. In comparison to SKEBS-syno (Figure 3(a)), track
uncertainty has increased in SKEBS-syno-PertBdy (Figure 10(a)).
Not surprisingly, the SKEBS boundary condition perturbations
have evidently increased the variability in the large-scale flow.
Intensity uncertainty has also somewhat increased in comparison
to SKEBS-syno, likely due to ensemble storms feeling the effects
of a more variable environment (Figure 10(b) and (c)).

Figure 11 displays the results of the error growth analysis for
forecast hours t = 72–168 h. At t = 72 h, the error has saturated
all scales through to wave number 4 (Figure 11(a)). Two days later,
error growth has led to as loss of predictability of wave numbers
2 and 3 (Figure 11(b)), and at the end of the forecast period, only
wave numbers 0 and 1 retain predictability (Figure 11(c)). The
predictability results from SKEBS-syno-PertBdy are qualitatively
comparable to SKEBS-syno, indicating that perturbed lateral
boundaries are not able to change the general characteristics of
TC intensity predictability in this case. However, the error ratios
of wave numbers 0 and 1 in SKEBS-syno-PertBdy are larger
than in the SKEBS ensembles without perturbed boundaries. For
example, at t = 168 h, the wave number-1 error ratio reaches
0.68, which is 20% larger than its respective value in SKEBS-syno
(0.56) due to increased variability in the large-scale environment.

7. Source of predictability in TC intensity

In the operational community, TC intensity is defined as the
maximum wind speed at 10 m height anywhere within a TC. This
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Figure 11. Same as Figure 7, but for SKEBS-syno-PertBdy. (a) t = 72 h, (b)
t = 120 h and (c) t = 168 h.

metric has limitations, because it is practically unobservable due
to the highly turbulent, rapidly evolving, and spatially extensive
wind field in TCs (Vukicevic et al., 2014). By computing a
linear fit of the wave numbers-0+1 intensity to the NHC best
track intensity data, Vukicevic et al. (2014) showed that the
circulation represented by wave numbers 0 and 1 contributes
roughly 90% to the maximum wind speed in Atlantic hurricanes,
while higher-frequency features with shorter predictability limits
contribute the remaining 10%. The most critical factor in TC
intensity predictability is thus the predictability of the vortex-
scale circulation. Sections 5 and 6 demonstrated that the mean
vortex and the wave number-1 asymmetry in Hurricane Earl were

predictable for at least 7 days. An important question is what
leads to the relatively long predictability of these wave-number
components. Figure 12 shows the predictable component (i.e. the
sum of wave numbers 0 and 1) of the 20 TC wind fields from
SKEBS-syno at t = 168 h. At first glance, all vortices have two
basic characteristics in common: a ‘doughnut-shape’ wind field
surrounding a calm centre (the wave number-0 component), and
a wave number-1 asymmetry with stronger winds in the eastern
semicircles. Predictability of the vortex-scale circulation is a
manifestation of these common characteristics. However, there
are also notable differences between the ensemble members,
indicating uncertainty and forecast error. For example, members
1 and 17 (Figure 12(a,q)) resemble mature TCs with strong
inner cores and well-defined radii of maximum wind, whereas
members 12 and 18 (Figure 12(l, r)) represent TCs in their
weakening stage. In the weaker members, the radius of maximum
wind is less well defined, the wind field expands, and a stronger
wave number-1 asymmetry indicates increasing shear and an
increase in translation speed.

The predictable component of the SKEBS-conv vortices
(Figure 13) consists of the sum of wave numbers 0–2. A clear
northwest-to-southeast oriented wave number-2 feature in the
wind fields exhibited by virtually all members is a manifestation
of the relative lack of wave number-2 uncertainty in SKEBS-conv.
Comparing the pronounced uncertainty in the SKEBS-syno wind
fields (Figure 12) with the uniformity in SKEBS-conv (Figure 13)
confirms that SKEBS perturbations much smaller than the TC
vortex itself translate to significantly less forecast uncertainty
on larger scales. The significant differences between Figures 12
and 13 demonstrate that perturbation scale is a key factor in
vortex-scale uncertainty. Only perturbations similar in scale to
the vortex are able to drastically affect error growth associated
with wave numbers 0 and 1. Convective-scale perturbations and
error upscaling are not able to impact error growth substantially
on the vortex scale, and the vortices look much more similar to
each other. Conversely, direct error projection onto larger scales
and error downscaling seem to play a much more important
role, in agreement with the recent study of Durran and Gingrich
(2014). The source of the wave number-0 and 1 predictability is
the environment, since the mean vortex is resilient to upscaling
convective-scale and mesoscale errors.

One remaining question is how to relate the scale-dependent
predictability of the TC wind field to the predictability of the
maximum wind speed. By definition, the peak wind is the
maximum value of the sum of all wave numbers – some of
which may be predictable at a particular time, whereas others
may not be. The peak wind is thus composed of a predictable
component, and an unpredictable component. A small fraction
of the peak wind’s predictability is already lost after a few
hours due to the short predictability of high wave numbers.
However, since the lowest wave numbers remain predictable, a
sizable fraction of the maximum wind remains predictable for
the entire forecast period. The black shaded area in Figure 14
represents the envelope (i.e. the ensemble range) of the intensity
of the predictable component (maximum of wave numbers 0+1 in
SKEBS-syno, Figure 14(a), and wave numbers 0+1+2 in SKEBS-
conv, Figure 14(b)). The maximum wind speed of the sum
of the remaining wave-number components is the intensity of
the unpredictable component, and the overall maximum possible
wind speed is the sum of the intensities of the predictable and
unpredictable components. This extreme value would only occur
if both maxima coincided at the exact location, and represents
something like a ‘worst case intensity value’ (red lines, Figure 14).
The black dots in Figure 14 are the actual maximum wind speed
values from the ensembles. Note that the predictable component
intensity (black shading) is a good approximation of the actual
maximum wind speed, in agreement with Vukicevic et al.
(2014). The difference between the intensity of the predictable
component and the actual peak wind is shown as a function
of forecast time for SKEBS-syno (Figure 15(a)) and SKEBS-
conv (Figure 15(b)). Generally, the differences are < 6 m s−1
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Figure 12. (a)–(t) Sum of the surface wind field’s wave number 0 and 1 components from SKEBS-syno at t = 168 h.

and there are only very few occasions where the two maxima
differ by more than 10 m s−1. Figure 15(c) and (d) show the
percentage of the deviation between the predictable component
intensity and the peak averaged over the 20 ensemble members.
The difference is much less than 10%, supporting the conclusion
of Vukicevic et al. (2014), who suggested that unpredictable
higher wave-number components can be regarded as a stochastic
residual.

8. Summary and conclusions

This study explores the upper bound of predictability of TC
intensity by investigating scale-dependent error growth in the
TC surface wind field. Hurricane Earl (2010) is representative of
a typical long-lasting major TC over the open ocean. Although
the results are based on Hurricane Earl, we suspect that they are
applicable to TCs with a similar life cycle. We use four high-
resolution, cloud-resolving model ensembles perturbed with
stochastic perturbations to better understand error growth in
the TC surface wind field and its effect on the multiscale
nature of TC intensity predictability. The stochastic perturbations
have specified spatial and temporal scales that range from
convective, to meso-, to synoptic scales (with and without
perturbed lateral boundary conditions). This approach allows
for (i) quantifying intrinsic, scale-dependent predictability limits
in a storm-relative coordinate framework, and (ii) assessing how
perturbation scales affect error growth, forecast uncertainty, and
the predictability of TC intensity. Scale-dependent predictability
limits were determined by computing the error ratios associated
with each component of the Fourier-decomposed TC wind fields

at different forecast times. This analysis helps us better understand
the multiscale nature of TC winds and potentially identify
predictable and unpredictable components that contribute to
the maximum wind speed in a TC.

The main results are summarized here:

• It is found that the error grows rapidly and saturates
at small scales (wave numbers > 7) within 6–12 h
in all four ensembles regardless of perturbation scale
(Figures 5 and 6).

• Errors grow relatively slower on scales associated with rain
bands (wave numbers 2–5), limiting the predictability of
these features to a few days (Figure 7(a–c).

• The TC mean vortex and asymmetry (wave numbers 0
and 1) are comparatively resistant to upscale error
propagation from higher wave numbers and remain
predictable for at least 7 days (Figure 7(g–i)).

• Large-scale perturbations and perturbed lateral boundary
conditions have larger impacts on TC vortex and forecast
uncertainty than perturbations on scales much smaller
than the TC vortex (Figures 3, 4, 12 and 13).

• The largest TC intensity forecast uncertainty is found
during the rapid intensification in all ensembles (Figures 4
and 14).

The relatively long predictability of the mean TC vortex and
wave number-1 asymmetry up to at least 7 days seemingly differs
from previous work such as the idealized modelling study by
Brown and Hakim (2013), who suggested that TC intensity
cannot be predicted beyond 72 h. The main difference of the
SKEBS ensemble approach in this study is that it allows for explicit
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Figure 13. (a)–(t) Same as Figure 12, but from SKEBS-conv and including wave number 2.

Figure 14. Envelope of the intensity of wave number 0+1 (black shading), the sum of the wave number 0+1 intensity and higher wave-number components (red),
and the peak wind speed from each of the ensemble forecasts (black dots) for (a) SKEBS-syno and (b) SKEBS-conv.

TC–environment interactions in a more realistic situation, which
seem to be crucial for the relatively longer predictability of
the mean TC vortex and wave number-1 asymmetry. This
result indicates that the vortex-scale flow is able to inherit
the predictability of the large-scale environment of a long-
lasting major TC over the open ocean. The relationship can be
exemplified by the predictability of wave number-1 asymmetry in
a TC, which is mainly a response to environmental wind shear and
forward motion of the vortex. The wave number-1 asymmetry
should remain predictable as long as the environmental flow
responsible for the shear and steering is predictable. The

characteristics of TC wind predictability generally agree with
the scale-dependent estimates of L69, and the predictability of
the TC vortex and wave number-1 asymmetry is in line with
predictability estimates of synoptic-scale flow.

A limitation of the storm-relative analysis is that TC track
uncertainty is not explicitly taken into account, although the
impact of track variability on TC intensity is reflected by
the relatively larger intensity variability in SKEBS-syno and
SKEBS-syno-PertBdy. Given that the error growth analysis was
performed in a storm-relative coordinate system, the TC intensity
predictability limits shown here are therefore storm-relative.
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Figure 15. Difference between the peak wind speed and the maximum value of wave numbers 0+1 for (a) SKEBS-syno and (b) SKEBS-conv. Ensemble-average
difference between the peak wind speed and the maximum value of wave numbers 0+1 (in per cent) for (c) SKEBS-syno and (d) SKEBS-conv.

They do not represent the predictability of TC-induced winds at
a particular geographical location. Another limitation is that
we cannot explicitly assess the predictability of certain TC
characteristics, such as eyewall replacement cycles, because the
error growth associated with these features does not project onto
the azimuthal wave-number space.

The error growth is generally characterized by an increase
in error magnitude at all scales and not by an upscale cascade
as in idealized studies such as L69. Scales associated with wave
numbers >5 (less than ∼200 km in spatial scale) have an energy
spectrum with a −5/3 slope, and lose predictability in less than a
day (Figure 5). However, the larger scales of the TC vortex have
an energy spectrum closer to −3 (Figures 6 and 7), indicating
that these scales behave more like two-dimensional flow, which
in theory has unlimited predictability. We suspect that the barrier
resisting upscale error growth is associated with the synoptic-scale
environment, which also has an energy spectrum closer to −3.
Another possible reason for the relatively long predictability of
wave numbers 0 and 1 could be the inertial stability of TC vortices,
which tends to suppress error growth on the vortex scale.

The results from this study highlight the importance of the
large-scale environment for accurate TC intensity forecasts. In
the case of long-lived TCs like Hurricane Earl, the environment
is able to provide predictability beyond a few days, because it
controls the structure and intensity of the mean TC vortex and the
wave number-1 asymmetry. However, the importance of the TC’s
environment comes at a cost. A more uncertain synoptic-scale
environment can lead to higher forecast uncertainty of TC
intensity and shorter predictability (error downscaling: Durran
and Gingrich, 2014). The adverse effect of large wave number-0
and 1 errors on TC intensity predictability has another crucial
application. Some artificial vortex-initialization techniques
such as ‘vortex-bogusing’ usually feature an unrealistic vortex
structure, which manifests as a large wave number-0 error. To
minimize these errors, more advanced initialization techniques

that create a more realistic wave number-0 and 1 structure
are essential. Furthermore, in order to decrease the forecast
error associated with TC intensity, the uncertainty of the
environmental flow needs to be minimized. This study suggests
that better observations of the TC environment and the mean
TC wind field may lead to more improvement in TC intensity
forecasts on synoptic time-scales (5–10 days), compared to
increasing observations of the small-scale structure in the TC’s
inner core.
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