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ABSTRACT

The predictability of the atmosphere has important implications for weather prediction, because it de-

termines what forecast problems are potentially tractable. Even though our general understanding of error

growth and predictability has been increasing, relatively little is known about the detailed structure of at-

mospheric predictability, such as how it varies between climate regions. The present study addresses this issue

by exploring error growth and predictability in three latitude zones, usingmodel output from a previous global

storm-resolving predictability experiment by Judt published in 2018. It was determined that the tropics have

longer predictability than the middle latitudes and polar regions (tropics, .20 days; middle latitudes and

polar regions, a little over 2 weeks). Each latitude zone had distinct error growth characteristics, and error

growth was broadly consistent with the underlying dynamics of each zone. Evidence suggests that equatorial

waves play a role in the comparatively long predictability of the tropics; specifically, equatorial waves seem to

be less prone to error growth than middle-latitude baroclinic disturbances. Even though the generality of

the findings needs to be assessed in future studies, the overall conclusions agree with previous work in that

current numerical weather prediction procedures have not reached the limits of atmospheric predictability,

especially in the tropics. One way to exploit tropical predictability is to reduce model error, for example, by

using global storm-resolving models instead of conventional models that parameterize convection.

1. Introduction

Recently, Judt (2018) employed a global storm-

resolving model1 to revisit the issue of atmospheric

predictability. The present study expands on the global-

mean approach of Judt (2018) by exploring the predict-

ability of three climate zones, namely, the tropics, middle

latitudes, and polar regions. Following the theme of Judt

(2018), this study addresses fundamental aspects of

predictability rather than the more practical issue of

forecast skill. Nevertheless, this study may still provide

some value for the broader weather prediction com-

munity, because the predictability limits documented

herein establish upper bounds for numerical weather

prediction.

Earth’s atmosphere is broadly organized into latitude

zones, and the flow in each zone is governed by distinct

dynamics. For example, the flow in the middle latitudes

is predominantly associated with baroclinic instability,

whereas the flow in the tropics is primarily associated

with moist convection. Scientists generally accept that

error growth is a function of the underlying dynamics;

therefore, one may expect that predictability is latitude

dependent. Yet despite this argument, researchers often

investigate error growth and predictability solely in the

context of global means (e.g., Lorenz 1982; Boer 1994;

Tribbia and Baumhefner 2004; Judt 2018)—a shortcoming

that motivates the present study.

For practical purposes, operational centers have been

routinely monitoring the skill of numerical models for

the middle latitudes (e.g., Simmons and Hollingsworth

2002; Bengtsson andHodges 2006; Buizza and Leutbecher

2015). Those reports, in conjunction with theoretical

studies such as Lorenz (1969), led to the conclusion that

middle-latitude flow is predictable for about 2 weeks

or a little longer—a time frame that seems to hold even

for the latest generation of global models (Zhang et al.

2019; Selz 2019). The consistency across model genera-

tions provides confidence in the 2-week limit, and it in-

dicates that the limit of middle-latitude predictability isCorresponding author: Falko Judt, fjudt@ucar.edu

1Also referred to as global convection-permitting model or

global cloud-resolving model.
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determined by errors growing in well-resolved baroclinic

disturbances.

Estimating the predictability of the tropics turned out

to be more challenging, in part because current global

models cannot properly resolve moist convection. Tradi-

tionally, global models parameterize convection, and con-

sequently, it is difficult to separate errors that grow due to

model inadequacies from errors that grow due to internal

instabilities (Reynolds et al. 1994). An additional issue

is that error growth is unrealistically slow in models with

parameterized convection (Selz and Craig 2015).

The present study bypasses these problems by ex-

plicitly modeling convection. It furthermore comple-

ments the work of Mapes et al. (2008), who investigated

tropical error growth through storm-resolving aqua-

planet simulations. Mapes et al. (2008) found that large-

scale errors had not saturated by day 16, implying that

tropical predictability reaches beyond the 2-week limit

of the middle latitudes. Straus and Paolino (2008) used a

much lower resolution general circulation model, but

arrived at similar conclusions; in fact, their results sug-

gest that the tropical atmosphere is predictable for at

least 1 month.

The reason behind the longer predictability of the

tropics remains unclear. One hypothesis is that con-

vectively coupled equatorial waves are more resistant

to error growth than baroclinic systems. However, ex-

cept for a recent study by Ying and Zhang (2017), the

predictability of equatorial waves has neither received

much attention nor has it been weaved into a general

theory of tropical predictability.

Our understanding of the predictability of the polar

atmosphere remains incomplete as well. One may argue

that polar predictability on weather time scales is similar

to that of the middle latitudes because the flow in both

zones is dominated by baroclinic instability. At a closer

look, however, the polar atmosphere is distinct. For

example, the polar atmosphere is practically devoid

of moist convection—the initial driver of error growth

(e.g., Zhang et al. 2003, 2007; Judt 2018). Furthermore,

the polar atmosphere gives rise to unique features such

as tropopause polar vortices (TPVs), which have much

longer lifetimes than baroclinic lows and may therefore

have longer predictability (Cavallo and Hakim 2009,

2010). Last, events such as sudden stratospheric warm-

ings may temporarily extend the predictability of the

polar atmosphere to subseasonal and seasonal time

scales (e.g., Baldwin and Dunkerton 2001; Thompson

et al. 2002; Tripathi et al. 2016). Needless to say, the

predictability of the polar atmosphere deserves to be

explored in greater depth.

In short, the main goal of the present study is to fur-

ther our understanding of atmospheric predictability.

The novelties lie in 1) the use of global model that ex-

plicitly simulates convection and 2) the contrasting

juxtaposition of tropical, middle-latitude, and polar

predictability. Naturally, this study has several limita-

tions. First, it is essentially a case study, for multiple

experiments of this sort would require immense com-

putational resources. Second, the experiment was con-

ducted with an atmosphere-only model, disregarding

feedbacks between the atmosphere and other Earth

system components. Third, error growth and predict-

ability were measured with classic grid point metrics—

useful for quantifying the predictability of turbulent

flows but not ideal for assessing the predictability of

individual weather events and other coherent phenomena.

The paper is organized as follows: section 2 briefly

describes the data andmethods. Sections 3 and 4 present

the error growth and predictability analysis in physical

and spectral space, respectively. Section 4 also offers a

closer look at atmospheric kinetic energy (KE) spectra,

scale-dependent predictability limits, and reveals possible

reasons for some unexpected predictability behavior

documented in Judt (2018). The predictability of TPV-like

vortices is discussed in section 5, while 6 focuses on

the predictability equatorial waves. A summary and

conclusions follows in section 7.

2. Data and methods

The present study is based on the identical-twin pre-

dictability experiment of Judt (2018) and uses the same

model output. Therefore, only a brief experiment over-

view will be provided here. See section 2 of Judt (2018)

for more details.

The experiment comprises three sets of identical

twins with lengths of 20, 15, and 10 days, respectively,

realized by integrating a 20-day-long control simulation

(0000 UTC 20 October–9 November 2012) and three

perturbed simulations that were started at 0000 UTC 20,

25, and 30 October 2012, respectively (Judt 2018, his

Fig. 1). As usual, the ‘‘error’’ was defined as the difference

between control and any of the perturbed runs. The sim-

ulations were produced with the Model for Prediction

Across Scales (MPAS; Skamarock et al. 2012) on a

globally uniform mesh with 4-km cell spacing. This grid

spacing is ‘‘convection permitting,’’ and a classic con-

vection parameterization was not used2.

Atmospheric predictability was explored in three re-

gions: tropics (108S–108N), middle latitudes (358–508N/S),

2 The model was set up with the ‘‘scale-aware’’ convection

scheme of Grell and Freitas (2014), which generated 15% of the

overall precipitation.
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and polar regions (poleward of 608N/S; Fig. 1). To increase

the number of data samples and reduce noise, the middle-

latitude bands and polar caps of each hemisphere were

combined into a single domain (interhemispheric dif-

ferences can therefore not be discussed).

The error was first quantified with two standard metrics,

difference kinetic energy (DKE) and root-mean-square

error of 500-hPa geopotential height (Z500RMSE). DKE

and Z500RMSE were computed for each latitude zone

according to

DKE(p, t)5
1

2
(Du2 1Dy2) (1)

and

Z500
RMSE

(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(DZ

500
)2

q
. (2)

In the above equations, u is zonal wind, y is meridional

wind, Z500 is 500-hPa geopotential height, D indicates

the difference between control and perturbed run (i.e.,

the error), and the overbar denotes an average of all grid

points in a latitude zone. The independent variables p and

t are pressure and time, respectively. DKEwas computed

on pressure levels of 925, 850, 700, 500, 250, and 200hPa.

Since the error saturates at twice the climatological

variance, the saturation limits were determined from

reanalysis fields as follows:

Limit
DKE

(p)5
1

61
�
61

d51

2[var(u)1 var(y)] , (3)

Limit
Z500RMSE

5
1

61
�
61

d51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2var(Z500)

q
. (4)

Here var(u), var(y), and var(Z500) are the gridpoint

variances computed over the 30-yr period 1987–2016.

The overbar again denotes an average of all grid points

in a latitude zone. Sixty-one variance averages were

computed, one for each day in October and November.

These 61 values were then averaged to obtain a single

value representative of the experiment period. Satura-

tion limits were computed from both ERA-Interim

(ERA-I) and the newer ERA5 dataset. We will see in

section 3 that the magnitude of the saturation limit

depends on whether one uses ERA-I or ERA5 data.

As usually done in predictability studies, the scale

dependency of predictability was explored via spectral

decomposition. Specifically, the u, y, and Z500 fields

were first interpolated to a regular latitude–longitude

mesh with 0.018 188 (;2 km) resolution. Then, the wind

and height fields as well as their respective difference

fields were Fourier decomposed. In the tropics and

middle latitudes, fields were Fourier decomposed in

longitude, but in the polar regions, fields were decom-

posed in latitude to circumvent the problem of converg-

ing meridians at the poles (Fig. 1). Following Errico

(1985), the linear trend of u, y, and Z500 on meridians

across the poles was removed to enforce periodicity.

After the Fourier decomposition, a coordinate trans-

form was applied to map each 1D power spectrum from

wavenumber into wavelength space. This step is conve-

nient for two reasons: first, wavelength better conforms

to the normal meaning of scale, and second, spectra can

be averaged in latitude without losing the ability to

attribute a physical wavelength to a given wavenumber.

(The polar spectra obtained with the above-described

method are equivalent to spectra obtained by rotating

the globe and placing the polar caps on the equator and

applying Fourier analysis in longitude on square meshes

with similar size to the polar caps.)

For the equatorial wave analysis, model fields were

filtered in the Wheeler–Kiladis wavenumber-frequency

domain (Wheeler and Kiladis 1999). Specifically, pre-

cipitation, 850-hPa zonal wind, and 850-hPa meridional

windwere first interpolated to a regular latitude–longitude

grid with 0.258 resolution at 6-hourly intervals. To focus on
the main region of wave activity, only data between 108N
and 108S were retained. The clipped fields were averaged

in the meridional direction to yield time–longitude arrays,

and subsequently filtered with the NCAR Command

Language ‘‘kf-filter’’ function to extract the waves.

FIG. 1. Latitude zones in which error growth and predictability

are analyzed (brown shading; tropics: 108S–108N; middle latitudes:

358–508N/S; polar regions: poleward of 608N/S). The arrows in-

dicate the direction in which fields are Fourier-decomposed to

obtain KE and Z500 spectra, i.e., in the tropics and middle lati-

tudes, fields are decomposed in longitude, but in the polar regions,

fields are decomposed in latitude.
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The kf-filter algorithm assumes that the underlying data

are periodic in time, and to alleviate artifacts from this

assumption being violated, the time–longitude arrays were

padded with missing values prior to filtering. Specifically,

the 20-day runs were padded with 10 days of missing

values, whereas the 15- and 10-day runs were padded

with 15 and 20 days of missing values, respectively.

3. Error growth and predictability in physical space

Let us begin the predictability analysis by considering

the evolution of volume-averaged DKE, a convenient

metric to quantify the bulk error in atmospheric flow

(Fig. 2). Following Judt (2018), time series of DKE are

presented in plots with linear (Fig. 2, top) and loga-

rithmic y axis (Fig. 2, bottom). Figure 2 conspicuously

tells that the predictability of the tropics exceeds that of

the extratropics. Specifically, the tropical atmosphere

seems to be predictable beyond 20 days, for the error

does not even come close to saturation during the 20-day

period (Fig. 2a). In contrast, error saturation occurs on

approximately day 17 in the middle latitudes and polar

regions (Figs. 2b,c).

These results are robust even when recognizing

that the saturation limit depends on the choice of

reanalysis (horizontal dashed lines in Fig. 2). The

discrepancy between ERA-I and ERA5 is particu-

larly prominent in the tropics, where the ERA5 sat-

uration limit is almost 20% higher than its ERA-I

counterpart (Fig. 2a). Evidently, the wind variance is

higher in ERA5, possibly because the higher-resolution

ERA5 includes the variance of motions that ERA-I

cannot resolve. Given that ERA5 supersedes ERA-I

(Hersbach andDee 2016), ERA5 data are deemedmore

accurate here, and only the ERA5 saturation limit will

be considered from here on.

Error growth seems to be broadly consistent with the

underlying dynamics of each zone. Consider the time

between 4 and 20 days, a period during which error

growth is not only qualitatively similar in the middle

latitudes and polar regions (Figs. 2b,c), but also quan-

titatively, as revealed by comparable error doubling

times (Table 1). This similarity is consistent with errors

growing through similar processes in those regions,

probably baroclinic instability. A different process must

be at work in the equatorial regions, where the error

FIG. 2. (top) Time series of volume-averagedDKE for the (a) tropics, (b) middle latitudes, and (c) polar regions. Black lines denote the

saturation limits computed from ERA5 (dashed) and ERA-I (dotted). (bottom) As in the top row, but with a logarithmic y axis. Each

panel has two DKE graphs with lengths of 20 and 15 days (the 10-day experiment has been omitted for clarity).
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growth rate is smaller. In fact, the error doubling time in

the tropics is more than twice as large as in the other two

zones (Table 1).

When focusing on the first 2 days instead of days 4–20,

the relationship reverses in that middle-latitude error

growth resembles that in the tropics rather than that in

the polar regions. Specifically, tropics and middle lati-

tudes feature the telltale sign of error growth through

moist convection, that is, an initial burst of explosive

growth (error doubling times of#1h; Table 1), followed

by a distinct transition to slower growth (Figs. 2d,e). The

polar regions, which lack convection, show much less

of a distinct transition (Fig. 2f). During the first hour, the

error even reduces in the polar region, followed by slow

growth. As a result, the error doubling time for the 0–6-h

period is negative (Table 1).

One question that Fig. 2 cannot answer is whether

predictability is height dependent. It turns out that,

broadly speaking, predictability has little systematic

height dependence, except that the normalized error

tends to decrease with height (Fig. 3). In the polar re-

gions, the DKE time series are essentially congruent

(Fig. 3, right column). In the tropics (Fig. 3, left col-

umn), the graphs look least congruent, and at day 20, the

error fraction decreases from near 70% at 850 hPa to

about 50% at 200 hPa (Fig. 3a). The middle latitudes

show a behavior somewhere in between the tropics and

polar regions.

Besides the comparatively more pronounced height

dependence, tropical error growth seems to be distinct

in another way. Around 10–12 days, the tropical error

growth rate increases, especially in comparison with

the more gradual increase of the growth rate in the

middle latitudes and polar regions. This point is hardly

noticeable in Figs. 2 and 3, but it stands out in the

Z500RMSE time series where there is a clear ‘‘kink’’

TABLE 1. Error (DKE) doubling times, computed according to

Eq. (4) from Judt (2018) with 6-hourly data. The values in the

second column are an average of the 28 error doubling time values

in the 7–14-day period. Negative doubling times mean that the

error magnitude decreases with time.

0–6 h 7–14 days

Tropics ,1 h 131 h

Middle latitudes 1 h 56 h

Polar regions 23 h 53 h

FIG. 3. As in Fig. 2, but instead of volume averages, the panels show horizontal averages at three levels: upper troposphere (solid lines),

middle troposphere (dashed lines), and lower troposphere (dotted lines). TheDKE time series are normalized by the respective saturation

limits. (top) The 20-day runs and (bottom) the 15-day runs.
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between two phases of quasi-linear growth (Fig. 4).

One may certainly question the importance and ro-

bustness of this finding given the limited sample size,

but section 4 will show that an increase in growth rate

around day 10 is consistent with error growth through

equatorial waves.

In summary, this section revealed that error growth

and atmospheric predictability are functions of latitude

zone, and that error growth is generally consistent with

the underlying dynamics of each zone. The predictability

limit of themiddle latitudes was determined to be a little

over 2 weeks, a time span that agrees with other studies

to within a day or two (e.g., Simmons and Hollingsworth

2002; Zhang et al. 2019; Selz 2019). The polar regions

seem to have a similar predictability horizon, although

errors initially grow much more slowly. The predict-

ability limit of the tropics could not be specified; how-

ever, it seems to be substantially longer than that of the

extratropics (.20 days). This finding is in accord with

Straus and Paolino (2008).

4. Error growth and predictability in spectral space

This section has three main objectives, the first of

which is to investigate the latitude dependence of

the atmospheric KE spectrum (also referred to as the

background spectrum). The second objective is to

quantify the scale-dependent predictability limits in

each latitude zone, and the third is to reveal possible

reasons for some unexpected predictability behavior

documented in Judt (2018).

As in the previous section, we will first discuss verti-

cally averaged quantities, beginning with the back-

ground spectrum (Fig. 5). In general, the slope of the

background spectrum steepens as one moves from

the equator toward the poles. Specifically, the tropics

have a relatively shallow spectrum with a quasi-uniform

slope close to25/3 (Fig. 5a). The middle latitudes, shown

in Fig. 5b, feature a canonical two-segment spectrum

with a slope near23 at the synoptic scales (wavelengths

around 1000 km) and a slope near 25/3 at the meso-

scales (wavelengths,300 km). Finally, the polar regions

have a steeper spectrum with a slope is closer to

FIG. 4. Time series of Z500RMSE averaged over the tropics. The

dashed line denotes the saturation limit computed from ERA5.

There are three Z500RMSE graphs with lengths of 20 and 15 days

(the 10-day experiment has been omitted for clarity).

FIG. 5. Background KE spectra (black) and error KE spectra (red), vertically averaged over the (a) tropics, (b) middle latitudes, and

(c) polar regions. Error spectra are valid at 6, 12, 24, 48, 120, 240, and 480 h, as indicated by the red numbers in (c). Background spectra are

time-mean ensemble means multiplied by 2 to highlight the saturation limit. Error spectra are averaged over the number of experiments

available at a given time. For reference, each panel includes graphs with logarithmic slopes of23 and25/3 (dotted lines). Data beyond the

effective resolution limit of 24 km, which is indicated by the vertical gray lines, are not considered.
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23 and only a little bit of shallowing at the mesoscales

(Fig. 5c).

The fact that the spectral slope differs between the

three zones is almost certainly a consequence of the

underlying dynamics. For example, the k25/3 spectrum

in the tropics is consistent with a convecting flow that

lacks broad rotational motions [according to Sun et al.

(2017) and Weyn and Durran (2017) moist convection

is sufficient to produce a k25/3 spectrum]. The flow in the

middle latitudes contains broad rotational motions such

as planetary Rossby waves as well as intermittent and

localized convection, a combination that manifests in

the canonical spectrum with slopes of23 and25/3. The

large-scale flow in the polar regions is also dominated by

broad rotational motions, but in contrast to the middle

latitudes, the lack of convection precludes the forma-

tion of amesoscale k25/3 spectrum. Theweak shallowing

in the polar regions may be associated with topo-

graphically induced gravity waves (Menchaca and

Durran 2019).

Next, we will examine the error spectra in Fig. 5.

In contrast to the sloped error spectra of Judt (2018),

which were obtained via spherical harmonics trans-

form, the Fourier-derived error spectra in Fig. 5 have

the form of horizontal lines akin to the similarly derived

ones in Durran and Gingrich (2014) and Zhang et al.

(2019). Other than the horizontal nature of the error

spectra, their evolution generally agrees with previous

studies. In particular, the error grows ‘‘up-magnitude’’

rather than ‘‘up-scale’’ (e.g., Mapes et al. 2008; Durran

et al. 2013; Durran and Gingrich 2014; Judt 2018).

In the tropics, the mesoscale error quickly approaches

the background spectrum (which marks the saturation

limit). For example, at wavelengths ,100 km, the error

approaches the saturation limit within 24 h (Fig. 5a).

In the middle latitudes, this process takes substantially

longer, and for the same scales, the error does not ap-

proach the saturation limit before 48 h (Fig. 5b). The

error amplitude in the polar regions is initially much

smaller than in either other zone and reaches only about

10% saturation at the smallest resolved scales by 48 h.

As the error grows, the error spectra close in on the

saturation limit at successively larger scales. By 480h

(20 days), the error in the tropics has saturated at scales

up to about 5000km (Fig. 5a). The middle-latitude error

has even saturated at all scales by that time (Fig. 5b; the

lack of saturation at certain wavelengths is interpreted

here as an artifact of noise and limited sample size). This

behavior signifies a total loss of middle-latitude pre-

dictability by day 20; an identical result was obtained

by the ECMWF-model-based predictability study of

Zhang et al. (2019). Even though the polar error is

initially much smaller, its amplitude and saturation

behavior become comparable with that of the middle

latitudes at later times (Fig. 5c).

The differences and similarities in spectral error

between the three zones reflect once more that error

growth depends on the underlying dynamics. In particular,

convection is key to initial error growth (tropics, middle

latitudes), whereas baroclinic processes lead to higher

growth rates later on (middle latitudes, polar regions).

The error spectra in Fig. 5 are valuable for revealing

general properties of error growth, however, they are

not ideal for quantitative analyses. Notably, the log-

arithmic nature of plots makes it is difficult to assess

the precise time at which the error saturates because

a seemingly negligible separation between error and

background may actually be a substantial amount of

‘‘predictable energy.’’ To assess the actual limits of pre-

dictability more precisely, themethod of Judt (2018) was

applied. Specifically, the predictability limit of a given

wavelength was calculated by determining the forecast

time at which the error reaches 90% saturation (Fig. 6;

also shown is the time at which the error reaches 60%

saturation, which is often considered the limit of useful

prediction skill).

The data points in Fig. 6 trace a distinct pattern for each

climate zone, meaning that each zone has particular pre-

dictability characteristics. For example, the predictability

of mesoscale motions with scales ,100 km is shorter

in the tropics than in the middle latitudes (5–7 vs

10–12 days), in agreement with Fig. 5. For synoptic-scale

motions (wavelengths.600km), this relationship reverses;

in fact, while scales .5000km in the middle latitudes

have predictability limits of 15–17 days, the error in the

tropics never even reaches 60% saturation at those

scales. The predictability of the polar regions is peculiar

in that mesoscale errors do not saturate, although they

reach 60% saturation well before day 10.

The pattern traced by the orange data points is less

noisy than that of their red counterparts, and since a

threshold of 60% is often used to define useful pre-

diction skill, the orange points may be the more useful

ones for the weather prediction community. In this

sense, skillful 5-day forecasts of mesoscale weather

systems seem to be futile in the tropics, but certainly

possible in the polar regions. On the other hand, weather

systems with scales of 1000km seem to have similar

predictability horizons in all zones, roughly 106 2 days.

Figure 6 raises an interesting question: Why does

mesoscale flow have a shorter predictability time limit in

the tropics than elsewhere? One possible reason is the

lack of synoptic-scale forcing in the tropics, or in other

words, convection and associated mesoscale motions

are unconstrained (i.e., random and less predictable) in

the tropics, but forced and constrained by the more
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predictable synoptic-scale flow in the extratropics. More

research is needed to test this hypothesis.

The next step in our analysis is to examine the height

dependence of spectra and predictability (Figs. 7 and 8).

Generally, the slopes of the background spectra steepen

with height, a behavior that is especially apparent in the

polar regions and the middle latitudes (Fig. 7, right two

columns). Furthermore, the kink that links the k23 and

k25/3 parts of the middle-latitude spectrum becomes less

pronounced toward the surface, in agreement with the

globally averaged spectra of Judt (2018).

Even though spectral error growth does not show

any obvious dependence on height (Fig. 7), the scale-

dependent predictability limits in Fig. 8 show substantial

variability with height, in addition to their variability

across latitude zones. Evidently, atmospheric predict-

ability is a complex issue, and the predictability limit of

atmospheric motions is not only a function of scale, but

also of height and latitude.

To highlight a few differences between the zones,

consider the upper troposphere (Fig. 8, top). In the

tropics, predictability limits increase monotonically

from smaller to larger scales, meaning that the smallest

resolved scales have the shortest predictability. In contrast,

the middle latitudes and polar regions feature a predict-

ability minimum at intermediate scales of 200–400km.

When descending to the middle troposphere (Fig. 8,

middle), the pattern in the middle latitudes aligns with

that in the tropics; in particular, the relative maximum at

the smallest resolved scales disappears (Fig. 8e). In the

polar regions, predictability limits are generally longer,

but there is no clear dependence on scale, except that

many smaller scales do not saturate (Fig. 8f). Descend-

ing farther to the lower troposphere, the patterns be-

come increasingly muddled by noise, especially in the

tropics (Fig. 8, bottom).

Despite the complex and disorderly look of Fig. 8,

there are a few commonalities between the three lati-

tude zones.One commonality is that predictability limits

generally increase as one descends toward the surface,

especially at the mesoscales. For example, in the middle

latitudes, the predictability limit of 100-km-scalemotions

is ,5 days in the middle troposphere, but increases

to .10 days in the lower troposphere (the middle lati-

tudes are unique in that mesoscale predictability limits

are longer at 250 hPa than at 500 hPa, but it is unclear

why this is the case).

Let us now turn our attention to the spectrum of Z500

(Fig. 9). In particular, we will compare the spectrum of

Z500 power to that of 500-hPa KE. One similarity be-

tween the two spectra is the comparatively shallow slope

in the tropics. Another similarity is that, in the middle

latitudes, both spectra feature a pronounced kink

between the mesoscale and synoptic-scale segments

(Figs. 9a,b vs Figs. 7d,e). The two spectra differ in the

polar regions; specifically, the kink is muchmore distinct

in the Z500 spectrum compared to the 500-hPa KE

spectrum (Fig. 9c vs Fig. 7c).

Menchaca and Durran (2019) showed that terrain-

induced gravity waves can generate a mesoscale k25/3

spectrum. We may therefore suspect that this mechanism

plays a role in the pronounced shallowing of themesoscale

FIG. 6. Predictability limits (90% saturation; red dots) and limits of useful prediction skill (60% saturation; orange dots) as a function of

scale. Red star symbols at the 20-daymark indicate that the 90% threshold has not been reachedwithin the 20-day period (orange symbols

mean the same, but for 60% saturation). Data beyond the effective resolution limit of 24 km, which is indicated by the vertical gray lines,

are not considered.
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Z500 spectrum in the middle latitudes and the polar

regions (Figs. 9b,c). What is not clear, however, is why

this effect seems to have a lesser effect on the polar KE

spectrum (Fig. 7, right column). Possibly, the terrain

effect of Menchaca and Durran (2019) is not strong

enough in these regions, as the mountain ranges in

Earth’s polar regions are lower and the mean westerly

flow weaker than in the middle latitudes.

Judt (2018) noted a peculiarity in that Z500 error

spectra did not saturate at wavelengths ,300 km. This

behavior is reproduced here, most notably so in the

middle latitudes (Fig. 9b). Interestingly, the gap between

background spectrum and 20-day error spectrum at the

mesoscales disappears when we restrict the Z500 spectral

analysis to a land-free region over the Pacific Ocean in-

stead of full latitude circles (Fig. 10). Note that the

mesoscale saturation over the South Pacific occurs be-

cause the background spectrum has less power at short

wavelengths, not because the error spectrum has more

power (one can compare the 20-day error spectra in

Figs. 10 and 9b and will notice the power is similar at the

cutoff wavelength of 24 km).

A question that naturally follows is, Why does the

Z500 spectrum over the South Pacific have compara-

tively less power at the mesoscales? One hypothesis is

that the extra power in the Z500 background spectrum

in Fig. 9b is associated with shortwave components of

standing disturbances over topography. The mesoscale

errors are produced by vertically propagating terrain-

induced gravity waves whose signal shows up in veloc-

ity (leading to the saturation at short wavelengths in

Fig. 7e), but not in Z500. These waves typically tilt

FIG. 7. As in Fig. 5, but instead of volume averages, spectra for various pressure levels are shown.
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strongly with height so that the vertical integral of their

buoyancy perturbations will not have a large impact on

the vertically integrated pressure perturbations and the

height of the 500-hPa pressure surface.

The other unanticipated behavior noted by Judt (2018)

was that predictability times increase toward the surface.

This behavior was also reproduced here (Fig. 8). One

can speculate again that topography (or more generally,

the land surface) causes this behavior, specifically, the

land surface imposes structure on the flow that hin-

ders decorrelation of the flow (a full decorrelation of

eddies in the flow is equivalent to a complete loss of

FIG. 8. As in Fig. 6, but instead of vertical averages, data for various pressure levels are shown.
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predictability). A comparison of Fig. 11 with the middle

column of Fig. 8 supports this hypothesis: predictabil-

ity limits seem to be less height dependent when com-

puted for the land-free region (Fig. 11) than when

computed for the entire middle-latitude belt (Fig. 8,

middle column).

To summarize, this section revealed that the slope of

the KE spectrum varies with latitude (and to a lesser

degree with height). The predictability limit of atmo-

spheric motions was determined to depend on scale,

latitude, and height. Broadly speaking, mesoscale mo-

tions have shorter predictability in the tropics than in

the extratropics, but the reverse is true for large-scale

motions. Finally, effects of topography seem to be the

reason for increase in predictability times toward the

surface, especially for mesoscale motions.

5. Predictability of TPV-like features in the polar
atmosphere

The previous sections showed that the extratropical

flow loses predictability after a little over 2 weeks in this

experiment. In the middle latitudes, the loss of predict-

ability is a manifestation of decorrelating troughs and

ridges in the Rossby wave pattern (Baumgart et al.

2019), a process that is illustrated in Fig. 12: at simu-

lation day 15, the control simulation features a wavy

jet stream pattern with a ridge centered southwest of

Ireland and a deep trough over Europe (Fig. 12a). On

the other hand, the perturbed simulation features a

zonal jet stream over northern Europe with two cutoff

lows east and west of the Iberian Peninsula (Fig. 12b).

The snapshots of 500-hPa wind speed and vorticity in

Fig. 12 also illustrate how the flow in the arctic differs

from that in the middle latitudes. Specifically, the winds

in the arctic are weaker, and the vorticity field is

smoother and devoid of ‘‘noise’’ that appears in the

middle latitudes. This noise, which is made up of small-

scale granules with positive and negative vorticity, is

mostly associated with frontal convection and flow over

topography. One of the unique features of the polar

atmosphere is the occurrence of tropopause polar vorti-

ces (TPVs), features that are frequently observed pole-

ward of the middle-latitude jet streams (Cavallo and

Hakim 2009, 2010). TPVs are smaller than typical baro-

clinic lows and have lifetimes that can exceed 1 month,

and especially the latter fact suggests that TPVs may

have long predictability.

Because of the predictability framework chosen for

this study, which heavily relies on bulk metrics, it is

difficult to assess the predictability of coherent entities

such as TPVs. Nonetheless, an attempt is made here

with the goal demonstrate that TPVs have relatively

long predictability. First, we ensure that the simulations

give rise to TPVs or TPV-like vortices. Some of the

candidates are displayed in 13; they differ from vorticity

features in the middle latitudes in that they are more

compact and spatially coherent, they are relatively

small scale (diameters of the vorticity ‘‘bull’s-eyes’’

FIG. 9. Background spectrum (black) and error spectra (red) of Z500 power.

FIG. 10. Z500 power spectrum (black) and t5 20-day Z500 error

spectrum (red), computed over a land-free region over the South

Pacific (358–508S, 858W–1808).
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are,500km), and they evolve more slowly. The features

are decidedly cold core, with 700-hPa temperatures di-

rectly under the vorticity maxima up to 5K colder than

the environment (not shown).

One TPV-like feature, marked with arrows in Fig. 13,

develops when a lobe of vorticity is ejected from

the middle latitudes into the arctic near 1208W on

28 October (simulation day 3 counting from 25 October

2012; Figs. 13a,b). This vortex can be traced as a coherent

feature in both the control and 15-day perturbed run for

at least 10 days. It tracks eastward along the poleward

edge of the Canadian Arctic Archipelago, and at day 8,

it is located at the northeastern tip of Ellesmere Island

(Figs. 13c,d). Given that the scale of the vortex is only

200–300km, the good agreement between control and

perturbed run at day 8 is quite remarkable and unlike

what we might expect when consulting Fig. 8c, that is, a

complete loss of predictability for features with a scale

of 300km after 6–7 days. The vortex continues to move

eastward for another couple of days, and at simula-

tion day 10, it is located near Spitsbergen (Figs. 13e,f).

Shortly after this time, the feature begins to interact with

the middle-latitude flow and loses its definition in both

simulations.

TPVsmay be relatively immune to error growth, since

they draw their energy from radiation and not from

convection or baroclinic processes (Cavallo and Hakim

2013). This would explain why the tracked features in

Fig. 13 evolve very much alike in both the control and

perturbed run up to the point where they begin to in-

teract with themiddle-latitude flow. Aword of caution is

needed, however, regarding the generality of the result.

Figure 13d, for example, depicts a TPV-like vortex near

the North Pole that has no ‘‘sibling’’ in the control run,

suggesting that the predictability of TPV formation may

be not as high, especially when the features are initiated

by vorticity incursions from the middle latitudes. An in-

depth object-based predictability analysis of TPVs is

necessary to draw more definite conclusions about their

predictability.

6. Predictability of convectively coupled
equatorial waves

Convectively coupled equatorial waves (hereafter

simply equatorial waves) are one of the dominant sources

of variability on weather time scales in the tropics

(Kiladis et al. 2009), yet up to this day numerical

weather prediction models struggle to simulate these

phenomena. More specifically, operational models are

not able to capture the propagation of waves, a problem

that leads to unrealistically stationary rainfall patterns

as seen in Fig. 1 of Dias et al. (2018). One of the goals

FIG. 11. Predictability limits computed in a land-free region over

the South Pacific (358–508S, 858W–1808).
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of this section is to show that storm-resolving models

can mitigate this problem. Moreover, this section intends

to 1) shed light on the error growth characteristics of

equatorial waves and 2) develop the notion that equato-

rial waves play a role in the predictability of the tropics.

Note that the spatial scale of some wave types (about

5000km) coincides with wavelengths that remain pre-

dictable beyond 20 days (Fig. 5), foreshadowing a pos-

sible relationship between equatorial waves and tropical

predictability.

In contrast to the stationary patterns of current op-

erational models (Dias et al. 2018), the 4-km MPAS

generates rainfall patterns that propagate zonally

throughout the 20-day simulation period (Fig. 14,

shading). Tests with lower-resolution versions of MPAS

revealed that explicit convection seems to be key to

capture this propagation; specifically, a 7.5-km MPAS

with explicit convection showed rainfall patterns simi-

lar to the ones in Fig. 14, whereas a 15-km MPAS with

parameterized convection produced substantially de-

graded rainfall patterns (not shown). The east- and

westward-propagating rainfall features are reflecting

various equatorial wave types, which can be identified

through filtering. From here on, we will focus on Kelvin

waves (eastward-propagating; Fig. 14a), Rossby waves

(westward-propagating; Fig. 14a), mixed Rossby-gravity

waves (westward-propagating, Fig. 14b), and westward-

propagating n 5 1 inertio-gravity waves (Fig. 14b). The

amplitude of the waves is related to their spatial scale,

with large-scale Kelvin waves being the most dominant

FIG. 12. Snapshots of middle-/upper-tropospheric flow in the (a),(c) control and (b),(d) 20-day perturbed run on

simulation day 15 (0000 UTC 4 Nov 2012). Satellite view with a nadir point at 508N, 258E provides a look at the

northern middle latitudes and Arctic region. (top) The 500-hPa wind speed (color shading; m s21) and Z500 height

(contours) and (bottom) the 500-hPa relative vorticity (s21).
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and small-scale inertio-gravity waves being the weakest

(Fig. 14).

To be consistent with the rest of the study, the error

growth analysis of equatorial waves will be based on

the wave’s wind fields. The waves leave a clear imprint

on the low-level winds, and as in the rainfall fields, the

trained eye can identify zonally propagating features

even in the unfiltered wind fields (Fig. 15, shading).

Again, Kelvin waves have the most robust signal with a

peak amplitude of .3ms21 in the zonal wind (Fig. 15,

top). Mixed Rossby–gravity waves, which leave a clear

signal in the meridional wind component, are particu-

larly abundant in the Indian Ocean and central Pacific

(Fig. 15, bottom). Inertio-gravity waves occur more inter-

mittently and have much weaker amplitudes, rendering

them barely noticeable in the raw fields. The relative

FIG. 13. Polar stereographic view of the northern polar cap, showing the evolution of 500-hPa relative vorticity in

the (a),(c),(e) control and (b),(d),(f) 15-day perturbed run. Black arrows point to a vorticity feature that resembles a

tropopause polar vortex. Color scale is as in Figs. 12 (bottom).
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weakness of this wave type in the simulations agrees with

observational studies (e.g., Wheeler and Kiladis 1999).

We will begin to investigate the predictability of the

waves by determining how the wind patterns differ be-

tween the simulations. At first glance, the wind fields

in the control and perturbed simulations are almost

identical, including the wave-filtered wind components

(Fig. 15). For example, amplitude and phase differences

of the Kelvin waves are minor even at later simulation

times, and similarly for mixed Rossby–gravity waves.

The agreement between the raw wind patterns and

filtered wave components in Fig. 15 is a sign that equa-

torial waves do not promote rapid error growth.

To assess error growth in the waves more quantita-

tively, we first survey the overall activity of each wave

type and compare the waves’ amplitude and phase

between the control and 20-day perturbed run (Fig. 16,

left two columns). Echoing Fig. 15, the two simulations

show similar patterns of Kelvin, Rossby, and mixed

Rossby–gravity waves with only minor differences.

Consequently, the error is comparatively small when

compared to the amplitude of the waves (Fig. 16, third

column). Especially in the case of Kelvin and mixed

Rossby–gravity waves, the error remains insignificant

for at least a week (Figs. 16c,k). In comparison to the

large-scale waves, errors in inertio-gravity waves grow

faster, and the error magnitude becomes comparable

to the magnitude of the actual waves by about day 10

(Fig. 16o).

The last step of the analysis is to assess the predict-

ability of the waves, in this case by evaluating time series

of normalized error KE (Fig. 16, rightmost column, note

that time is on the y axis). The error is normalized by

the saturation limit, which was defined here as the

background energy associated with each wave type:

Limit
Wave

(t)5 23
1

2
KE(t)CtrlWave 1KE(t)PertWave

h i
. (5)

LimitWave is time dependent, which is intentional

because in this way the normalization suppresses error

magnitude fluctuations due to the time-varying am-

plitude of the waves. We first note that the error in

the three large-scale waves does not saturate within

20 days (Figs. 16d,h,l). In fact, the error reaches only

50% saturation in mixed Rossby–gravity and 60%

saturation in Kelvin and Rossby waves. On the other

hand, the error in inertio-gravity waves saturates on

day 18. In Kelvin and mixed Rossby–gravity waves,

the error does not reach 10% saturation until day 10,

highlighting the resistance of equatorial waves to

error growth.

The high predictability of large-scale equatorial waves

begs the question of how predictable phenomena

FIG. 14. Hovmöller plots of rainfall rate averaged between 108S and 108N (blue shading; mmh21), overlaid with contours that repre-

sent the filtered rainfall components of (a) Kelvin and equatorial Rossby (ER) waves (contoured every 0.05mmh21) and (b) mixed

Rossby–gravity (MRG) and n 5 1 westward inertio-gravity (WIG1) waves (contoured every 0.025mmh21).
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are that encompass even larger scales, such as the

Madden–Julian oscillation (MJO). A comprehensive

MJO predictability analysis is beyond the scope of this

study, but as a first step, we will address the predict-

ability of large-scale precipitation systems by comparing

their evolution in the 20-day twins. Here, large-scale

precipitation systems are identified with the large-scale

precipitation tracking (LPT) method of Kerns and

Chen (2016). The LPT method tracks contiguous areas

within which the spatially smoothed rain rate exceeds

12mmday21 (the rain rate itself is derived from 3-day

rainfall accumulations).

October–November 2012 saw widespread convec-

tive activity over the Indo-Pacific warm pool associ-

ated with a low-amplitudeMJO event3 (Fig. 17, shading).

At simulation day 5, the LPT algorithm identifies

three precipitation systems in each run, with no discern-

ible differences in the size, shape, and location of these

features (Figs. 17a,b). Five days later, the westernmost

precipitation system has disappeared in both runs, but

the contours of the remaining system are still congru-

ent, indicating that large-scale tropical precipitation

features have high predictability up to at least day 10

(Figs. 17c,d).

By day 15, the size of the precipitation systems has

started to differ between the runs, indicating growing

differences in the intensity and location of rainfall

(Figs. 17e,f). A new system has developed over the

Malay Peninsula, yet the area of this system is much

larger in the perturbed run than in its counterpart.

Overall, precipitation in the domain reduces by day 20,

and only one object exists that qualifies as large-scale

precipitation system (Fig. 17g). This system is associ-

ated with a cyclone tracking into the Bay of Bengal.

The tropical cyclone exists in the perturbed simulation

as well, but it is weaker and taking a more westward

track (Fig. 17h).

Note that despite differences in the size and shape of

large-scale precipitation systems by day 15, the overall

FIG. 15. Hovmöller plots of (a)–(d) 850-hPa zonal wind and (e)–(h) 850-hPa meridional wind (shading; m s21), overlaid with contours

that represent the filtered wind components of (top) Kelvin and equatorial Rossby waves (contours from 1 to 2.5m s21, every 0.5m s21)

and (bottom) mixed Rossby–gravity and n5 1 westward inertio-gravity waves (contoured every 0.25m s21, starting at 0.5m s21). (left to

right) The control, 20-day perturbed run, 15-day perturbed run, and 10-day perturbed run.

3 See historic MJO events at http://www.bom.gov.au/climate/mjo/.
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FIG. 16. Hovmöller plots of wave-filtered winds from the (left) control and (left center) 20-day perturbed run (m s21), (right center)

difference between the two (‘‘error’’; m s21), and (right) time series of the error. The error has been normalized by the saturation

magnitude (dashed line), which was computed here as sum of the wave KE from the control and perturbed runs. Rows show

the different wave types: (a)–(d) Kelvin, (e)–(h) equatorial Rossby, (i)–(l) mixed Rossby–gravity, and (m)–(p) n 5 1 westward

inertio-gravity waves.
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basin-scale rainfall distribution remains similar in the

two runs (Figs. 17e–h, shading). Specifically, the equato-

rial eastern Indian Ocean region becomes progressively

drier, and at day 20, Indian Ocean rainfall is concen-

trated in an ITCZ band south of the equator. One pos-

sible reason for this similarity is that both runs use

identical SST fields. The prescribed SSTs tend to anchor

convection in certain regions and may therefore artifi-

cially enhance predictability on very large scales. Future

studies with a coupled atmosphere–ocean model will be

helpful to shed light on this issue.

In summary, the predictability of equatorial waves

depends on the wave type, and large-scale waves seem

to be predictable for .20 days. This finding agrees well

with Ying and Zhang (2017), who used a limited-area

model. The relatively long predictability of equatorial

waves provides an explanation for why the tropics have

longer predictability than the extratropics. The notion

that equatorial waves determine the predictability of

the tropics is substantiated by another fact: recall that

the error growth rate in the tropics featured an uptick

around day 10 (Fig. 4)—essentially the same time at which

the error in equatorial waves begins to grow noticeably

(Figs. 16d,h,l). Large-scale precipitation system as-

sociated with the MJO are predictable on time scales

similar to equatorial waves, and the basin-scale rain

fall pattern seems to be insensitive to error growth

even at 20 days; however, this finding may be an artifact

of using prescribed SSTs.

7. Summary and conclusions

The overall goal of this study was to better understand

and quantify atmospheric predictability. The objectives

were to 1) compare error growth between the tropics,

middle latitudes, and polar regions, 2) quantify the in-

trinsic predictability of each latitude zone, and 3) explore

the predictability of equatorial waves. The analysis was

facilitated with output from the global storm-resolving

simulations of Judt (2018).

The main findings of the present study can be sum-

marized as follows:

d Error growth is latitude dependent and consistent with

the underlying atmospheric dynamics. During the first

couple of hours, the error magnitude was highest in

FIG. 17. Average rain rate for the 3 days ending at the indicated times (color shaded) and large-scale precipitation

systems (contours), here defined as areas within the 12mmday21 contour of the spatially smoothed rain-rate field

[for specifics, see Kerns and Chen (2016)].
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the tropics and lowest in the polar regions. However,

error growth rates in the extratropics soon become

larger than in the tropics and lead to faster destruction

of predictability (Figs. 2 and 5).
d The tropical atmosphere has longer predictability

than the extratropical atmosphere. In this particu-

lar experiment, the error in the middle latitudes and

polar regions saturated after 17 days, whereas the

error in the tropics did not saturate during the 20-day

experiment period (Fig. 2).
d A canonical KE spectrum with logarithmic slopes

of23 at the synoptic scales and25/3 at themesoscales

exists only in the middle latitudes. In the tropics and

polar regions, the slopes are more uniform (Fig. 7).

In other words, the famous spectrum of Nastrom and

Gage (1985) does not seem to be universal, and it

exists in a pure form only in the middle-latitude

upper troposphere (Fig. 7b). The latitude dependence

of the spectral slope—and, by extension, the latitude

dependence of error growth—can be explained by

differences in the underlying dynamics.
d The predictability limit of atmospheric motions is a

complex function of scale, height, and latitude (Fig. 8).
d Errors in equatorial Kelvin, Rossby, and mixed

Rossby–gravity waves did not saturate during the

20-day experiment period (Fig. 16). This finding

provides an explanation for why the tropics have

longer predictability.More specifically, equatorial waves

seem to be more resistant to error growth than

baroclinic systems.

The finding that tropical predictability exceeds that

of the extratropics supports the results of Straus and

Paolino (2008), but somewhat contradicts conventional

wisdom and current numerical weather prediction ex-

perience (e.g., Dias et al. 2018). This apparent contra-

diction may be a reflection of the discrepancy between

practical and intrinsic predictability (Melhauser and

Zhang 2012). Specifically, tropical predictability may

currently bemore limited due tomodel error than due to

the growth of internal errors. Given that the parame-

terization of convection is one of the largest sources of

model error (Randall et al. 2003), future generations

of global storm-resolving models may be able to exploit

the predictability of the tropics more effectively.

A positive conclusion of this study is that current

numerical weather prediction procedures have not yet

reached the limits of predictability, even though the

rate of forecast skill improvement has slowed in recent

years. The studies of Selz (2019) and Zhang et al. (2019)

arrived at similar conclusions; however, they only

examined the predictability of the middle latitudes.

Specifically, they argue that the predictability horizon

of middle-latitude weather can be extended by up to

5 days. The present study suggests that there is even

more potential the tropics. It is up to the meteorolog-

ical community to exploit this predictability by im-

proving the models, data assimilation techniques, and

observational capabilities.
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