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ABSTRACT

Global convection-permitting models enable weather prediction from local to planetary scales and are

therefore often expected to transform the weather prediction enterprise. This potential, however, depends on

the predictability of the atmosphere, which was explored here through identical twin experiments using the

Model for Prediction Across Scales. The simulations were produced on a quasi-uniform 4-km mesh, which

allowed the illumination of error growth from convective to global scales. During the first two days, errors

grew through moist convection and other mesoscale processes, and the character of the error growth re-

sembled the case of k25/3 turbulence. Between 2 and 13 days, errors grew with the background baroclinic

instability, and the character of the error growthmirrored the case of k23 turbulence. The existence of an error

growth regime with properties similar to k25/3 turbulence confirmed the radical idea of E. N. Lorenz that the

atmosphere has a finite limit of predictability, no matter how small the initial error. The global-mean pre-

dictability limit of the troposphere was estimated here to be around 2–3 weeks, which is in agreement with

previous work. However, scale-dependent predictability limits differed between the divergent and rotational

wind component and between vertical levels, indicating that atmospheric predictability is a more complex

problem than that of homogeneous, isotropic turbulence. The practical value of global cloud-resolvingmodels

is discussed in light of the various aspects of atmospheric predictability.

1. Introduction

Over the lastdecade, a tremendous increase in comput-

ing power has facilitated the advent of global convection-

permitting numerical weather prediction (NWP) models

(GCPMs). GCPMs are able to simulate Earth’s atmo-

sphere with astonishing realism and allow the prediction of

weather seamlessly from local to planetary scales (e.g.,

Satoh et al. 2008; Putman and Suarez 2011;Miyamoto et al.

2013; Skamarock et al. 2014; Heinzeller et al. 2016). Not

surprisingly, GCPMs are often expected to revolutionize

weather prediction, for example, by predicting high-impact

weather up to twoweeks ahead (ECMWF2016).However,

manyaspects of the atmosphere’s predictability are notwell

understood, especially processes that involve interactions

across a wide range of scales. Consequently, it is not clear

what forecast problems are potentially tractable and how

GCPMs may be used in practice. This study addresses this

issue by exploring the predictability of the atmosphere in

the context of GCPM simulations.

Atmospheric flow is extremely complex, which hampers

efforts to comprehensively quantify its predictability. To

keep the problem manageable, predictability has often

been studied in simplified settings, for example, by using

idealized numerical experiments (e.g., Lorenz 1969;

Métais and Lesieur 1986; Rotunno and Snyder 2008). In

fact, most of our knowledge about the predictability of

fluid flow is based on idealized flows and theory, pro-

voking questions about the degree to which this knowl-

edge applies to the real atmosphere.

One way to explore atmospheric predictability in a

more realistic framework is to employ either global or

regional NWP models (e.g., Lorenz 1982; Zhang et al.

2002; Tribbia andBaumhefner 2004; Selz andCraig 2015).

Yet both global and regional model studies have suffered

from distinct shortcomings. For example, classic global

models with grid spacings of .10km were generally not

able to explicitly resolve mesoscale processes such as

moist convection—a major disadvantage because con-

vection is the principal process associated with the initial
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growth of forecast error (Zhang et al. 2003). Regional

models, on the other hand, require lateral boundary

conditions, which constrain error growth on synoptic

scales. The constrained error growth in turn leads to ar-

tificially enhanced predictability estimates (Errico and

Baumhefner 1987; Vukicevic and Errico 1990).

GCPMs are excellent tools to study atmospheric

predictability because they combine the high resolution

of regional models with the unrestricted geometry of

global models. With this advantage in mind, the pur-

pose of this study is to better understand the de-

terministic predictability of scales of motions generally

referred to as weather. Specifically, the goals are 1) to

illuminate the error growth process from convective to

planetary scales, 2) to compare error growth charac-

teristics with those predicted by theory, and 3) to

quantify the atmosphere’s predictability. Furthermore,

this study is intended to provide an update on previous

low-resolution global model predictability studies (e.g.,

Lorenz 1982; Tribbia and Baumhefner 2004; Simmons

and Hollingsworth 2002) and complement a recent se-

ries of high-resolution predictability studies that em-

ployed regional models (Durran and Gingrich 2014;

Selz and Craig 2015; Durran and Weyn 2016; Weyn and

Durran 2017). Given the study’s focus on intrinsic pre-

dictability (Lorenz 1996), model error and initial con-

dition error with realistic amplitude are not considered.

Consequently, the results provide an upper bound on

what we can possibly predict. Moreover, this study does

not examine the predictability of processes from sea-

sonal to subseasonal time scales nor the predictability of

average quantities such as monthly means (Shukla

1981). Finally, questions regarding the ocean’s effect on

atmospheric predictability cannot be addressed because

the present model is not coupled to an ocean model.

This paper is structured as follows: Relevant previous

work is discussed in section 2. Section 3 introduces the

model and experiment setup, followed by a general de-

scription of the simulations in section 4. Sections 5 and 6

discuss error growth and predictability in physical and

spectral space, respectively. These two sections also

introduce a few novel analytics to the predictability lit-

erature, such as a comparison of different error metrics;

computations of error doubling times for different error

growth regimes; and a quantitative analysis of pre-

dictability limits as a function of scale, altitude, and

underlying flow dynamics. The paper closes with the

summary and conclusions in section 7.

2. Previous literature

The first classic predictability study was conducted by

Thompson (1957), who explored error growth in a simple

barotropicmodel and noted that small-scale errors do not

necessarily foil the prediction of large-scale motions.

Made at a time when NWP was still in its infancy,

Thompson’s conclusion raised hope for the possibility of

accurate long-term predictions of synoptic-scale weather

systems. This optimistic view was soon challenged by

Lorenz (1963), who employed a highly simplified model

of atmospheric convection to show that even the smallest

errors eventually lead to the loss of predictability of the

entire system. Lorenz (1963) postulated that if the at-

mosphere behaved like the simple system he studied,

accurate long-term weather predictions would not be

possible.

Intrigued by the question of how long the weather can

be predicted, Lorenz studied error growth and pre-

dictability in more fundamental ways. Using a spectral

turbulence model, Lorenz (1969) demonstrated that the

predictability of homogeneous isotropic turbulence de-

pends on the logarithmic slope of the flow’s kinetic

energy spectrum. Specifically, flows whose spectral slope

is shallower than 23 have a finite intrinsic limit of pre-

dictability. In this case, error growth is scale dependent

(i.e., errors on progressively smaller scales grow pro-

gressively faster). Moreover, the error growth rate is

time dependent, slowing monotonically as the error

saturates on progressively larger scales. In contrast,

flows whose kinetic energy spectrum falls off with23 or

steeper have formally unlimited predictability. In the

case of a 23 spectrum, error growth is not scale de-

pendent and the growth rate is constant, meaning that

predictability can be extended arbitrarily long by mak-

ing the initial error sufficiently small. (For a spectrum

with a slope steeper than 23, error growth is scale de-

pendent again, but small-scale errors grow slower than

large-scale errors, and therefore, these types of flows

also have unlimited predictability.) Over the years,

turbulence models of varying degrees of sophistication

have confirmed Lorenz’s theory, which has become a

universally accepted tenet in theoretical meteorology

(e.g., Leith and Kraichnan 1972; Métais and Lesieur

1986; Boffetta et al. 1997; Rotunno and Snyder 2008;

Durran and Gingrich 2014).

Up to this day, however, it remains unclear how pre-

dictability theory—which strictly speaking only applies

to homogenous isotropic turbulence—relates to the real

atmosphere (e.g., Harlim et al. 2005; Ngan and Eperon

2012). In particular, the question of whether the atmo-

sphere exhibits an intrinsic limit of predictability has not

been conclusively answered (Tennant 2009; Palmer et al.

2014). Theory implies that mesoscale motions have

limited predictability, because the atmospheric kinetic

energy spectrum follows a power law close to k25/3 at the

mesoscales (k is horizontal wavenumber). By the same
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argument, synoptic-scale motions would have unlimited

predictability, since the spectrum follows a power law

close to k23 at synoptic scales (Nastrom andGage 1985).

To better understand how predictability theory re-

lates to the predictability of geophysical flows, scientists

have studied error growth in models of intermediate

complexity (e.g., Morss et al. 2009; Ngan et al. 2009).

These studies generally indicate that certain aspects of

predictability theory apply to geophysical flows, whereas

other aspects do not. For example, in accord with theory,

Morss et al. (2009) demonstrated that quasigeostrophic

flow exhibits limited predictability if the slope of the

kinetic energy spectrum is shallower than 23. On the

other hand, the error growth behavior in geophysical

flows seems to be different from homogenous isotropic

turbulence. Specifically, instead of an error cascade from

smaller to larger scales (upscale growth), errors in more

complex flows tend to grow uniformly at all scales (up-

magnitude growth; e.g., Mapes et al. 2008; Ngan et al.

2009; Durran and Gingrich 2014). Idealized large-

domain full-physics simulations, such as those of Waite

and Snyder (2013) and Sun and Zhang (2016), have also

helped to shed light on the nature of kinetic energy

spectra and the relationship between dynamics and

predictability.

In the end, the study of atmospheric predictability

requires realistic NWPmodels, especially with regard to

quantifying the predictability of the real atmosphere.

Most real-world global model studies conducted over

the last decades agree that the predictability limit of the

atmosphere is about two weeks (e.g., Lorenz 1982;

Dalcher and Kalnay 1987; Mapes et al. 2008), although a

few studies yielded somewhat longer estimates of up to

three weeks (Simmons and Hollingsworth 2002; Buizza

and Leutbecher 2015). Several global model studies

have also noted that atmospheric error growth does not

concur with predictability theory; in particular, pre-

dictability does not seem to be limited by upscale growth

of initially small-scale errors but rather by the direct

excitation and amplification of errors on synoptic scales

(Boer 1994; Tribbia and Baumhefner 2004; Ngan and

Eperon 2012).

As briefly mentioned in the introduction, the global

models used in those studies were limited by low reso-

lution. Specifically, they required the parameterization

of convection, and they could not generate the k25/3 part

of the atmospheric kinetic energy spectrum. Hence,

important aspects of the atmospheric error growth

process were not taken into account.

Indeed, there has been increasing evidence that meso-

scale error growth is more in line with the idealized k25/3

turbulence case. Studies using convection-permitting re-

gional models indicate that errors grow fastest on the

smallest resolved scales, which results in the loss of me-

soscale predictability within hours (Zhang et al. 2003,

2007; Selz and Craig 2015; Durran and Weyn 2016;

Weyn and Durran 2017). The practical consequence of

this behavior is the well-known difficulty to forecast con-

vective phenomena, such as tropical cyclones (Sippel and

Zhang 2008; Judt et al. 2016) and severe convective storms

(e.g., Hawblitzel et al. 2007; Zhang et al. 2015). Because of

their restricted domains, however, regionalmodels cannot

address error growth from mesoscale to synoptic scales

and vice versa or, in other words, error growth across the

‘‘kink’’ that links the k25/3 and k23 parts of the spectrum.

Furthermore, regional models are almost exclusively

employed in case studies focusing on particular mesoscale

phenomena, which makes it difficult to generalize the

results.

3. Methods

a. Model and model configuration

The foundation of this study is a set of GCPM simu-

lations producedwith the atmospheric component of the

Model for Prediction Across Scales (MPAS; Skamarock

et al. 2012). MPAS is a global nonhydrostatic NWP

model that uses C-grid staggering of the prognostic

variables and centroidal Voronoi meshes1 to discretize

the sphere. The model employs a hybrid terrain-

following vertical height coordinate (Klemp 2011),

which is configured such that horizontal coordinate

surfaces are constant height surfaces above approxi-

mately 15 km above mean sea level.

This particular study used a quasi-uniform mesh

with a mean cell center spacing of 4 km. Specifically, the

mesh comprised 36 864 002 cells, most of which were

hexagons. Only a few prior studies have employed

global models with a comparable or higher horizontal

resolution (Miyamoto et al. 2013; Skamarock et al. 2014;

Heinzeller et al. 2016). The height coordinate was con-

figured with 55 layers, and the model top was at 30 km.

Subgrid-scale processes were parameterized with the

parameterization schemes listed in Table 1. Of note is

the Grell–Freitas convection scheme, a scale-aware cu-

mulus parameterization that enables a smooth transition

in the partitioning between parameterized and resolved

precipitation (Grell and Freitas 2014; Fowler et al.

2016). On the 4-km mesh, most deep convection is

considered resolved, and the scheme produces little

parameterized precipitation.

1 Voronoi meshes are unstructured grids that allow for both

quasi-uniform discretization of the sphere and local mesh

refinement.

MAY 2018 JUDT 1479

Unauthenticated | Downloaded 10/18/21 04:10 PM UTC



b. Experiment setup

Error growth was investigated bymeans of identical twin

experiments, which is a common approach in predictability

studies (e.g., Tribbia and Baumhefner 2004; Zhang et al.

2007; Selz and Craig 2015). This particular experiment

comprised three sets of identical twins, that is, a 21-day-long

control simulation (CTRL) and three time-staggered per-

turbed simulations with lengths of 20, 15, and 10 days

(Pert-20d, Pert-15d, Pert-10d; Fig. 1). Of course, a larger

number of ensemblemembers would bemore desirable,

but computational and data storage constraints limited

this study to three identical twins. The perturbed runs

were staggered in time to investigate the dependence

of error growth on the large-scale flow configuration,

which evolved during the 20-day experiment period.

As is usual in identical twin experiments, the error

was defined as the difference between CTRL, that is,

the ‘‘truth,’’ and the perturbed simulations (which were

identical to CTRL except for slightly perturbed initial

conditions). CTRL was initialized with ERA-Interim

fields valid at 0000 UTC 19 October 2012, and a sub-

sequent 24-h spinup period allowed the model to gen-

erate initially unresolved scales before the actual

20-day experiment period from 0000 UTC 20 October

to 0000 UTC 9 November 2012 (the reason why this

period was chosen is given in section 4). The perturbed

runs were initialized at 0000 UTC 20 October (Pert-

20d), 25 October (Pert-15d), and 30 October 2012

(Pert-10d). Similar to Selz and Craig (2015), the initial

conditions of the perturbed runs were created by saving

restart files fromCTRL and seeding the 3D temperature

field in the restart files with small-amplitude Gaussian

noise (mean m5 0K, standard deviation s5 0:01K).

This minuscule initial ‘‘error’’ is much smaller than any

observational uncertainty and, according to the well-

known metaphor, can be thought of as mimicking the

effect of butterflies.

c. Error and predictability metrics

The predictability literature offers a variety of metrics

that quantify error, most of which measure the distance

between pairs of simulations by computing squared

differences. One of these metrics is the difference total

energy (DTE; Zhang et al. 2003), which is defined as

DTE(x, t)5
1

2

�
Du2 1Dy2 1

c
p

T
r

DT2

�
. (1)

Here, D indicates a difference between any of the per-

turbed simulations and CTRL. The variables u, y, and T

have their usual meteorological meanings, cp is the heat

capacity of dry air at constant pressure (1004 Jkg21K21),

and Tr 5 287K is a reference temperature.

Twoother errormetricswere used in this study, namely,

the difference kinetic energy of the 10-m wind (DKE10m),

and the root-mean-square error of the 500-hPa geo-

potential height field (Z500RMSE). TheDKE10m was

computed analogously to DTE (excluding the tem-

perature term), and Z500RMSE was computed ac-

cording to

Z500
RMSE

(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(DZ
500

)2

s
. (2)

The Z500RMSE is a legacy metric that has been frequently

used in global model predictability studies (e.g., Lorenz

1982; Simmons and Hollingsworth 2002; Buizza and

Leutbecher 2015). One reason for evaluatingDKE10m and

Z500RMSE in addition to DTE is to test whether pre-

dictability depends on a specific metric.

The limit of predictability is usually defined as the

forecast time at which the error saturates. For flows that

completely decorrelate, such as idealized turbulence, the

error saturation limit is twice the variance of the flow itself.

For flows with climatological components, such as atmo-

spheric flow, the saturation limit is customarily defined as

TABLE 1. List of physics parameterizations used with MPAS.

Parameterization Reference

Grell–Freitas convection scheme Grell and Freitas (2014)

Thompson microphysics scheme Thompson et al. (2008)

Mellor–Yamada–Nakanishi–Niino (MYNN) boundary layer and surface layer scheme Nakanishi and Niino (2006, 2009)

Rapid Radiative Trans Model for GCMs (RRTMG) short- and longwave scheme Iacono et al. (2008)

Noah LSM Niu et al. (2011), Yang et al. (2011)

FIG. 1. Schematic of the four simulations that compose the pre-

dictability experiment. The time from 21 to 0 denotes the 24-h

spinup period.
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twice the climatological variance. In the latter case, the

variance of climatological components is excluded since

their prediction is usually not considered skillful.

The climatological variance defining the saturation

limit for DTE is given by

var
uyT

(x, t)5 var(u)1 var(y)1
c
p

T
r

var(T) . (3)

Here, var(u), var(y), and var(T) are the variances of the

zonal and meridional wind components and tempera-

ture, computed over the 30-yr period of 1987–2016 using

ERA-Interim data. More specifically, 3D variance fields

were computed for 0000 UTC of each day in October

andNovember, and the resulting 61 fields were averaged

to obtain a single 3D variance field representative of the

experiment period. Climatological variances defining

the saturation limits forDKE10m and Z500RMSE were

computed similarly. The reanalysis data are much

coarser resolution (80km) than the model output and

therefore do not account for the variance of smaller-

scalemotions. Potential implications of this disparity are

discussed in section 6.

To explore error growth as a function of spatial scale,

error fields are usually decomposed spectrally. Here,

error kinetic energy spectra and Z500 error variance

spectra were computed from the MPAS output follow-

ing section 3 of Skamarock et al. (2014). Specifically, the

unstructured MPAS-native u, y, and Z500 fields were

first interpolated to a regular latitude–longitude grid

with ;2-km grid spacing. Then a spherical harmonics

transform was applied to the interpolated u, y, and Z500

fields to obtain the background spectra, which, multiplied

by two, denote the saturation limit (including climato-

logical components). To obtain the error spectra, the

spherical harmonics transform was applied to the differ-

ence fields Du, Dy, and DZ500. All resulting 2D wave-

number decompositions were summed over spherical

harmonics with the same total spherical wavenumber to

produce one-dimensional (1D) spectra and truncated at

the minimum resolvable wavelength of 8km. To illumi-

nate the spectral error growth in relation to the governing

dynamics, the spherical harmonics representation of the

horizontal wind were decomposed into a divergent and a

rotational component.

4. Global weather simulated by the 4-km MPAS

October–November 2012 featured elevated global

weather activity (Blunden and Arndt 2013), making

this period a compelling case for studying atmo-

spheric predictability. Besides powerful extratropical

cyclones, October–November 2012 saw the initiation

of a Madden–Julian oscillation event and the develop-

ment of several tropical cyclones in theAtlantic, western

Pacific, and Indian Oceans.

Based on a brief qualitative analysis, the 4-km MPAS

simulated the atmosphere quite realistically. The model

captured many observed cloud features, and for the un-

trained eye, it is at first glance difficult to identify the

MPAS simulation in a side-by-side comparison with a

satellite image (Fig. 2). Specifically, MPAS seems to do a

decent job at simulating tropical convection, which em-

phasizes that the 4-km convection-permitting configura-

tion is adequate in this regard. The agreement is not

perfect, and there are some biases; for example, the cloud

distribution appears too extensive over water in the ITCZ

and too limited in the Amazon. Notwithstanding these

biases, the overall realism is relevant given the study’s

aim to explore atmospheric predictability with ‘‘a model

that comes as close to nature as currently possible’’

(R. Rotunno 2017, personal communication). Note that

it was not important to produce an accurate forecast,

because the model was assumed perfect and CTRL was

treated as the truth. Hence, a formal model verification

with observations is not part of this study.

Figure 3 illustrates select weather phenomena in more

detail and highlights mesoscale processes that past gener-

ations of global models were generally not able to resolve.

One example is the cellular wind speed pattern around

508N, 308W in the cold air advection sector of a strong

extratropical cyclone (highlighted by the box in Fig. 3a but

much better demonstrated by the 10-m wind speed ani-

mation provided in the online supplemental material).

This pattern is likely amanifestation of shallow convection

often seen in association with cold air moving over a rel-

atively warmer ocean. Another example is the realistic

depiction of tropical cyclones. CTRL and Pert-20d cap-

tured the full life cycle of Typhoon Son-Tinh, includ-

ing cyclogenesis, mature phase (Fig. 3b), and landfall in

Vietnam. CTRL and Pert-20d also captured the develop-

ment of Hurricane Sandy in the Caribbean but failed to

reproduce the correct track after Sandy moved into the

Bahamas (not shown). Finally, the development of after-

noon surface cold pools over the Amazon basin demon-

strates that the 4-km MPAS is able to explicitly simulate

diurnally driven deep convection (Figs. 3c,d). To assess

whether the magnitude of the cold pools and the diurnal

temperature range agree quantitatively with observations, a

more rigorous model evaluation—which is beyond the

scope of this study—would be necessary.

5. Error growth in physical space

Maps and time series present a basic overview of the

atmospheric error growth process, including an assessment
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of the global-mean limit of predictability. Specifically, this

section addresses differences in error growth and pre-

dictability between the troposphere and stratosphere, the

height dependence of error growth in the troposphere, and

the impact of different error metrics.

a. Error growth from convective to planetary scales

The sequence of global DTE maps in Fig. 4 illustrates

the tropospheric error growth process in magnitude,

scale, and spatial extent over 20 days. During the first

12h, the initially miniscule error amplified rapidly in

convective regions, such as the ITCZ and extratropical

fronts (Fig. 4a). Zooming in on the front off the U.S.

Atlantic coast in Fig. 5a revealed the quasi-linear shape of

the DTE field with embedded cellular maxima, which

suggests a close relationship between error growth and

precipitating convective bands. During days 1 and 2, the

DTE field expanded substantially, mainly because the

error spread out beyond the convective zones (Figs. 4b,c).

At the same time, the narrow frontal DTE bands became

less pronounced and coalesced into a larger-scale feature

(Fig. 5b). Sun and Zhang (2016) observed qualitatively

similar upscale error growth in idealized simulations of a

baroclinic wave. By day 5, the expanding error field had

contaminated the entire troposphere, and previously

elongated midlatitude mesoscale DTE features that were

associated with precipitating frontal zones had expanded

into synoptic-scale patches (Fig. 4d). The extratropics

experienced considerable error amplification between

days 5 and 10, leaving behind a clear DTE minimum in

the tropics (Fig. 4e). Error growth continued beyond day

10, but during the final days, the DTE pattern evolved

without a noticeable change in magnitude or scale, in-

dicating that the error growth process had concluded by

day 20 (Fig. 4f). The magnitude of DTE had also in-

creased in the tropical belt by this time, but the tropics

still represented a DTE minimum.

The error growth process described above concurs

with the conceptual error growth model proposed by

Zhang et al. (2007): errors initially grow with moist

convection, quickly spread through the mesoscales, and

eventually contaminate the baroclinic scales. It is not

clear, however, what processes cause error growth be-

yond the mesoscale in the tropics, where no baroclinic

instability exists. Error growth processes in the tropics

are therefore an excellent topic for future research. An

animation visualizing the entire error growth process

between 0 and 20 days is available in the supplemental

online material. The 12-min time step of the animation

highlights the initial significance of rapidly evolving

moist convection and exposes the ‘‘radiation’’ of error

away from convective systems, which may signify the

dispersion of error by gravity waves (Bierdel et al. 2017).

The evolution of stratospheric DTE (Figs. 6 and 7)

broadly resembled the tropospheric DTE evolution,

although there were some noteworthy differences. Ini-

tially, stratospheric DTE was strongly collocated with

tropospheric DTE (Figs. 6a,b vs Figs. 4a,b). This sug-

gests that stratospheric errors were induced by tro-

pospheric moist convection, likely through upward

FIG. 2. Comparison of (a) observed and (b) simulated clouds at 0000 UTC 20 Oct 2012; 10-mm channel-scaled radiances

from the GOES-East satellite are shown in (a), and outgoing longwave radiation (Wm22) from CTRL is shown in (b).
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propagating gravity waves (Zhang et al. 2007; Ngan and

Eperon 2012). The stratospheric DTE field was gener-

ally smoother and more diffuse than the tropospheric

DTE field, and stratospheric DTE did not exhibit the

linear structures resembling precipitating frontal bands

(Fig. 7a vs Fig. 5a). Furthermore, errors in the strato-

sphere seemed to radiate away faster from the convec-

tive sources, which is illustrated by the greater areal

extent of stratospheric DTE compared to DTE at the

same time (Fig. 6b vs Fig. 4b). In contrast with the tro-

posphere, there was also no distinct stratospheric DTE

minimum in the tropics on day 5 (Fig. 6e). These qual-

itative differences between the troposphere and strato-

sphere indicate that errors grow through distinct

physical processes, confirming earlier findings by Ngan

and Eperon (2012).

b. Evolution of global-mean error

Time series of global, volume-averaged DTE sum-

marize the information discussed above and quantify

error growth in a global-mean sense (Fig. 8). The data

are presented in linear (Fig. 8a) and log-linear graphs

(Fig. 8b) to better reveal distinct regimes of error growth

and highlight the initial growth period when the error

magnitude is still small. While much of the discussion in

this subsection involves error growth rates, the growth

rates themselves are investigated more quantitatively

by way of error doubling times in section 5c.

Error growth began with a relatively short initial

burst, during which DTE amplified by three to four

orders of magnitude (Fig. 8b). Because of the close re-

lationship between error growth and mesoscale pro-

cesses during this time, in particular moist convection,

the early growth phase from 0 to 48 h will be referred to

as the convective-mesoscale phase. Closer inspection of

the time series revealed that the growth rate (i.e., the

slope of the lines in Fig. 8b) decreased monotonically

during the convective-mesoscale phase, which is char-

acteristic of error growth in k25/3 turbulence and a

hallmark of limited predictability.

FIG. 3. Examples of meteorological phenomena ranging from synoptic scale to convective scale as simulated by

CTRL: (a) extratropical cyclone in the North Atlantic (shading; 10-m wind speed; m s21), (b) Typhoon Son-Tinh in

the SouthChina Sea (shading; outgoing longwave radiation;Wm22), and (c),(d) diurnalminimumandmaximumof

2-m temperature (shaded; 8C) and deep convection over the Amazon basin. Deep convection manifests in the

development of cold pools during local afternoon in (d).
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The convective-mesoscale phase was followed by a

prolonged phase of quasi-exponential error growth,

which seemed to last for about 10–12 days (only Pert-20d

was long enough to complete this phase; Fig. 8). The

10–12-day duration and the near-constant growth rate

(i.e., near-constant slopes in Fig. 8b) suggest that the

error grew with the background baroclinic instability, in

agreement with the conceptual model of Zhang et al.

(2007) and the much lower-resolution experiments of

Tribbia and Baumhefner (2004). Therefore, this period

will be referred to as the baroclinic phase. Variability

between members increased during the baroclinic

phase, indicating that the large-scale flow configuration

affects the growth rate during this regime.

The tropospheric error growth rate decreased abruptly

on day 13, announcing the end of the baroclinic phase

(again, only in Pert-20d, in Fig. 8a). Thereafter, DTE

grew unsteadily, reached its saturation limit on day 17

(the predictability limit), attained an overall maxi-

mum on day 18, and then decreased. Such fluctuations

are typical of errors approaching saturation due to

changes in the mean-state kinetic energy (Boffetta and

Musacchio 2017). Considering that only one pair of

twins exhibited error saturation, one should not take the

predictability limit of 17 days too literally, and a vaguer

statement like ‘‘the tropospheric predictability limit is

around 2–3 weeks’’ seems more appropriate. The latter

estimate is consistent with previous studies, especially

the more recent work by Ngan and Eperon (2012) and

Buizza and Leutbecher (2015).

During the convective-mesoscale phase, the glob-

ally averaged stratospheric error traced the tropo-

spheric error closely (Fig. 8, orange lines). However,

during the quasi-exponential phase, the growth rate of

FIG. 4. Sequence of DTEmaps illustrating tropospheric error growth over a 20-day period. DTE in this example

is based on the twins CTRL/Pert-20d and vertically averaged between 0 and 11 km. Blue rectangles in (a) and

(b) outline the zoomed-in area in Fig. 5.
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the stratospheric error was substantially smaller. Con-

sequently, the stratospheric quasi-exponential phase

extended beyond 20 days, and the error never saturated.

This result implies that the intrinsic predictability limit

of stratospheric flow is greater than 20 days, but it is

unclear what mechanisms contribute to error growth in

the stratosphere during the quasi-exponential phase,

given that baroclinic instability plays a lesser role (Ngan

and Eperon 2012).

The troposphere and stratosphere evidently differ in

error growth and predictability, but it is not apparent

whether this is also true for different levels within the

troposphere. Error growth turned out to be height de-

pendent, or more specifically, the baroclinic-phase error

growth rate increased with height (Fig. 9). However, the

climatological variance also increased with height and

saturation occurred around day 17 at all levels; there-

fore, the predictability limit was not a function of height.

Given that both varuyT and DTE are dominated by the

kinetic energy component (85%, not shown), the in-

crease with height is likely because the wind speed in-

creases with height.

The last question to be addressed in this section is

whether error growth and predictability depend on the

error metric. The answer seems to be no. Aside from dif-

ferences in their growth rates, bothZ500RMSE andDKE10m

follow the familiar DTE evolution (Fig. 10). Specifically,

Z500RMSE andDKE10m also undergo the convective-

mesoscale and baroclinic growth phases, with error

saturation on day 17 in Pert-20d. The fact that volume-

averaged DTE, Z500RMSE, andDKE10m all saturate at

the same time indicates that the troposphere exhibits

an unequivocal predictability limit independent of al-

titude and metric, at least in the simple bulk sense

discussed here. This finding somewhat disagrees with

Hohenegger and Schär (2007), who noted that mete-

orological surface variables have shorter predictability

than variables in the free troposphere. However,

Hohenegger and Schär (2007) used a regional model

over complex terrain, which may be the reason for this

discrepancy.

c. Error doubling times

Error doubling times are another way of quantifying

error growth, one that is helpful to estimate the margin

for forecast improvement (a doubling time implies that

the predictability horizon can be doubled by halving

the initial error). Early studies found that the atmo-

sphere’s error doubling time is about 5 days, but this

number steadily decreased as models became more

realistic. In the last two decades or so, doubling times

have settled to 1.2–1.7 days (Simmons et al. 1995;

Simmons and Hollingsworth 2002; Tribbia and

Baumhefner 2004). Here, error doubling times were

FIG. 5. As in Figs. 4a and 4b, but zoomed in on the midlatitude front over the western North Atlantic.
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calculated for tropospheric DTE and Z500RMSE ac-

cording to
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where E is either tropospheric DTE or Z500RMSE and

t2 2 t1 5Dt5 12 h.

DTE doubling times were initially very small (,1 h)

but increased steadily throughout the first two days

(Fig. 11, red lines). This increase is a consequence of the

decreasing error growth rate during the convective-

mesoscale growth phase and typical of flows with lim-

ited predictability. To illustrate this point, an initial error

doubling time of ,1h, as is the case here, means that

decreasing the initial error amplitude by 50% lengthens

the global predictability horizon by less than 1h.

The Z500RMSE doubling times differed quite drasti-

cally from the DTE doubling times during the first

two days and displayed two pronounced diurnal cycles

(Fig. 11, turquoise lines). These diurnal cycles, which

according to the knowledge of the author have not

been reported in the literature, are again evidence that

convection plays an important role in the early error

growth phase. During the early baroclinic phase

(roughly between days 2 and 6), both DTE and

Z500RMSE error doubling times leveled off around 24–

36 h before increasing again after day 6. Averaging the

doubling times over the core of the baroclinic phase

between days 3 and 10 and over the three pairs of twins

yielded 39 h (1.6 days) for DTE and 42 h (1.8 days) for

Z500RMSE. These values are in close agreement with

previous studies (Simmons and Hollingsworth 2002;

Tribbia and Baumhefner 2004), which indicates a

broad consensus: errors growing with the background

FIG. 6. As in Fig. 4, but for stratospheric DTE vertically averaged between 18 and 29 km.
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baroclinic instability double in a little more than

1.5 days. Error doubling times rose more sharply toward

the end of the baroclinic phase and fluctuated wildly

when the error approached saturation (not shown).

6. Error growth in spectral space

The overall goal of this section is to explore the scale

dependence of error growth and quantify the atmo-

sphere’s scale-dependent predictability limits. Three

particular questions are addressed. First, how do error

growth and predictability differ between the k25/3 and

k23 parts of the atmospheric kinetic energy spectrum?

Second, how do error growth and predictability differ

between the divergent and rotational spectrum? And

third, how do error growth and predictability depend on

altitude? Additionally, the relationship between atmo-

spheric error growth and predictability theory is dis-

cussed. Section 6b advances analytics of previous

predictability studies, which were mostly in the form of

spectra, by explicitly depicting the predictability limits

of the divergent, rotational, and total wind as a function

of spatial scale and altitude.

a. Evolution of error spectra

Figure 12 shows the background and error kinetic

energy spectra of the divergent, rotational, and total

wind at three different altitudes. The spectra comple-

ment those shown by Weyn and Durran (2017), who

computed similar spectra from a doubly periodic Car-

tesian domain. The spectra of the total wind are

the respective sums of the divergent and rotational

spectra and thus dominated by the rotational spec-

tra at larger scales (e.g., Waite and Snyder 2013;

Skamarock et al. 2014; Bierdel et al. 2016). Scales

smaller than 6D 5 24 km, to the right of the vertical

gray lines, are not fully resolved and will not be

considered further.

The background spectra of the rotational and total

wind clearly illustrate the transition between the k23 and

k25/3 segments of the kinetic energy spectrum. In

agreement with Skamarock et al. (2014) and Bierdel

et al. (2016), the transition occurs at longer wavelengths

in the stratosphere than in the troposphere. In the lower

stratosphere and upper troposphere (Figs. 12a–f), the

divergent spectrum differed markedly from the rota-

tional spectrum. Specifically, the divergent spectrum

had a shallower slope and lacked the k23 segment

(Figs. 12a,d). Descending toward the surface, the spectra

became generally shallower and the transition between

the k23 and k25/3 segments became less well defined. In

addition, the differences between the divergent and ro-

tational spectra became less obvious. For instance, both

the divergent and rotational spectrum of the 10-m wind

FIG. 7. As in Fig. 5, but for stratospheric DTE vertically averaged between 18 and 29 km.
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featured a transition between a steeper and shallower

segment (Figs. 12g–i).

The growth of error growth in magnitude and scale is

manifested in the progression of error spectra in Fig. 12.

The error swept out nearly the entire spectrum within

20 days except for scales of motion larger than about

wavenumber 5 (physical scale: 8000 km). According

to Boer (1994), the unsaturated large-scale motions

represent climatological flow features, such as sta-

tionary waves. Thus, the ‘‘retained predictability’’ at

scales . 8000 km does not contradict the 17-day pre-

dictability limit described in section 5, where pre-

dictability was evaluated with respect to climatology. In

agreement with many previous studies, the error grew

up-magnitude instead of cascading from smaller to

larger scales (e.g., Tribbia and Baumhefner 2004; Mapes

et al. 2008; Durran and Gingrich 2014).

Superficially, it seems that error growth did not differ

substantially between the divergent and rotational

component, especially in the troposphere (Figs. 12d–i).

However, the shape of the error spectra differed ap-

preciably between the troposphere and the lower

stratosphere at 20 km. Specifically, the error spectra in

the stratosphere were flatter than the tropospheric error

spectra and almost horizontal in the case of the rota-

tional component and total wind. The ‘‘flatness’’ of the

stratospheric error spectra is in agreement with the

finding that the stratospheric error spread to larger

scales more quickly (section 5a), and the discrepancy

between tropospheric and stratospheric error spectra is

further evidence that error growth differs between the

two layers.

Spectral error growth in the troposphere under-

went two distinct phases, consistent with the two

phases discussed in section 5. Initially (i.e., during the

convective-mesoscale phase), the error peaked at the

smallest resolved scales, and the growth rate decreased

monotonically (Figs. 12d–i, 13a). Both of these proper-

ties are consistent with spectral error growth in the case

of k25/3 turbulence (Fig. 13c), which provides compelling

evidence that the atmosphere has indeed a finite limit of

predictability. Figures 13a and 13c also differ in certain

aspects, because the initial error in Fig. 13a is white noise,

whereas the initial error in Fig. 13c is saturated at the

smallest scale and zero everywhere else. Durran and

Gingrich (2014) demonstrated that the form of the

evolving error spectra in the Lorenz turbulence model

is a function of the initial error spectrum as well as the

slope of the background kinetic energy spectrum.

At the later stages of the convective-mesoscale phase,

the initially well-defined peak broadened and shifted

toward larger scales (Figs. 12d–f). During the baroclinic

FIG. 8. (a) Time series of volume-averaged DTE from all the three pairs of identical twin

experiments (solid lines). Tropospheric DTE is in red, and stratospheric DTE in orange.

Dashed lines depict the error saturation limits, which were calculated according to Eq. (3).

(b) As in (a), but with a logarithmic y axis.
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phase, the error spectra developed a peak in the bar-

oclinically active band between wavenumbers 10 and 20,

in agreement with Tribbia and Baumhefner (2004). This

peak was especially pronounced in the rotational wind

(and therefore also in the total wind), indicating that

errors grew mainly with the balanced rotational flow.

During the baroclinic phase, the growth rate was nearly

constant (Fig. 13b), and error growth generally mirrored

the case of k23 turbulence (Fig. 13d).

Compared with the error kinetic energy spectra, the

evolution of the Z500 error variance spectra was quite

different (Fig. 14). The Z500 error variance spectra

lacked both the early peak at the smallest resolved scales

and the later peak at the baroclinically active scales.

Quite remarkably, the Z500 error did not saturate at

scales , 300km, mainly because error growth slowed

drastically in the shallower mesoscale part of the spec-

trum before reaching the saturation limit. The reason for

this unexpected behavior is unknown, and it may be due

to climatological features associated with topography

(Boer 1994). Future research is necessary to shed more

light onto this peculiar result.

b. Scale-dependent predictability limits

Sequences of error spectra such as the ones shown in

Fig. 12 illustrate the growth of error as a function of

spatial scale, but they are not ideal for quantifying the

scale-dependent predictability limits of atmospheric

flow.Here, following Judt et al. (2016), the predictability

limit of a given wavenumber was explicitly calculated by

determining the forecast time at which the error reaches

95% of the saturation limit. The resulting values are

plotted as red dots in Fig. 15 for the divergent, rota-

tional, and total wind components at various altitudes.

Analogously, points in orange show forecast times at

which the error reaches 60% of its saturation value, a

percentage that is often used to define useful prediction

skill (�Zagar et al. 2017). As before, data points corre-

sponding to scales smaller than 6Dwill not be considered

further.

The patterns traced by the red data points differ

substantially between the divergent and rotational wind

component and between different vertical levels. Evi-

dently, the predictability of atmospheric flow is much

more complex than what could be conveyed by the

simple global averages in section 5 or by the spectra in

Fig. 12. In particular, the predictability limits of atmo-

spheric motions are not only scale dependent but also

affected by the underlying dynamics (divergent vs ro-

tational motions) and altitude. Although the altitude

dependence is also apparent when considering a

threshold of 60% error saturation, differences between

the divergent and rotational motions are far less pro-

nounced (Fig. 15, orange dots).

Only rotational motions far above the boundary layer

exhibited a classic monotonic relationship between scale

FIG. 9. As in Fig. 8, but for horizontally averaged DTE on pressure levels of 250, 500, and

850 hPa from the twins CTRL/Pert-20d.
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of motion and limit of predictability (Figs. 15b,e,h; red

dots). For divergent motions in general and rotational

motions closer to the surface, the functional relationship

between the spatial scale and predictability limit is

convex, meaning that smaller mesoscale motions have

longer predictability than larger mesoscale motions.

Predictability limits are shortest at intermediate scales,

around wavenumber 500 for divergent motions in the

free atmosphere, and near wavenumber 100 for di-

vergent and rotational motions at and below 850hPa.

(The predictability limits of the total wind in the right

column of Fig. 15 are averages of the predictability limits

of the divergent and rotational motions, weighted by the

contribution of each wind component’s kinetic energy to

the total kinetic energy.) Although not described with as

much detail, Boer (1994) noticed the peculiar inverse

relationship between predictability and spatial scale at

the mesoscales and attributed it to local topographic

forcing. This hypothesis is substantiated by the fact that

the signal is stronger for the divergent flow, which is

dominated by gravity waves (Waite and Snyder 2013).

The effect of Earth’s surface on the predictability of

atmospheric flow also manifests in the increase of pre-

dictability time toward the surface. In fact, regarding the

10-m wind, only a few wavenumbers suffer from error

saturation, and many scales of motion retain pre-

dictability for at least 20 days (Figs. 15m–o).

Considering a threshold of 60% saturation, the re-

lationship between spatial scale and the time it takes the

error to reach this threshold is more in line with the

classic picture (i.e., the smaller the spatial scale, the

shorter the time, at least at the 500-hPa level and

above). More specifically, there exists a kink that co-

incides with the transition zone between the k25/3 and

k23 segments of the kinetic energy spectrum. This kink

is further evidence that the errors grow differently de-

pending on the spectral slope of the background spec-

trum, and in particular, errors in the k25/3 regime grow

upscale faster than errors in the k23 regime. In the free

troposphere, the limit of the useful prediction skill of

motions in the k25/3 regime is consistently ,5 days.

Closer to the surface, there seems to be a tendency for

FIG. 11. Error doubling times for global volume-averagedDTE and

Z500RMSE, computed from the data shown in Figs. 8 and 10.

FIG. 10. As in Fig. 8, but forDKE10m and Z500RMSE.
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developing a convex relationship akin to the scale-

dependent predictability limits.

The height dependence of error saturation times in

Fig. 15 contradicts the earlier finding that the troposphere’s

predictability limit is not height dependent (section 5b).

The reason for this contradiction is not obvious, but fol-

lowing similar arguments as in the previous paragraph, it

could be related to climatological components of the flow.

For example, topographic forcing could hinder the flow

from decorrelating completely, especially near the surface.

FIG. 12. Background kinetic energy spectra (black) and error kinetic energy spectra (red) of the (left) divergent, (center) rotational, and

(right) total wind at (a)–(c) 20 km, (d)–(f) 250 hPa, and (g)–(i) 10m. Error spectra are plotted in geometric sequences, i.e., in (a)–(c), error

spectra are valid at 6 and 12 h and 1, 2, 5, 10, and 20 days; in all other panels, error spectra are valid at 1, 2, 4, 8, and 15 h and 1.25, 2.5, 5, 10,

and 20 days. Error spectra are averaged over the number of experiments available at a given time, while the background spectra represent

the time-mean ensemble mean multiplied by 2 to denote the saturation limit. For reference, each panel includes graphs with logarithmic

slopes of 23 and 25/3 (gray lines). The vertical gray lines denote the effective model resolution (24 km).
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Consequently, the error does not saturate, which leads to

artificially ‘‘enhanced’’ predictability limits. This hy-

pothesis could be tested with an aquaplanet pre-

dictability experiment similar to that of Bretherton

and Khairoutdinov (2015).

On the other hand, it is possible that small-scale low-

level flow has indeed longer predictability. The clima-

tological variance varuyT , which was used to quantify

predictability in section 5, was computed from a dataset

with approximately 80-km grid spacing. Because of the

low resolution, mesoscale components of the flow were

therefore not included. This means that the total vari-

ance (and thus the saturation limit) may have been es-

timated too low because of the ‘‘missing’’ variance from

the mesoscale components. A potential low bias in the

error saturation limit implies that the predictability

limits in section 5 have a potential short bias. Missing

variance from mesoscale motions weighs particularly

heavy in the lower levels, where the kinetic energy

spectrum is shallower (Fig. 12).

7. Summary and conclusions

The main goals of this study were 1) to investigate at-

mospheric error growth with a global convection-

permitting NWP model (GCPM), 2) to compare error

growth characteristics with those predicted by theory,

and 3) to quantify the intrinsic predictability of the

atmosphere. Specifically, error growth was explored

through a set of identical twin experiments, which were

FIG. 13. (a),(b) Spectral error growth in the predictability experiment comparedwith (c),(d) spectral error growth

in idealized k25/3 and k23 turbulence. Shown in (a) is the evolution of the 250-hPa error kinetic energy spectra

between 1 and 12 h and in (b) between 3 and 7 days; (c) and (d) are adapted from Rotunno and Snyder (2008, their

Fig. 1).
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produced with the atmospheric component of the Model

for Prediction Across Scales (MPAS) on a quasi-uniform

4-kmmesh. The focus was on the intrinsic predictability of

motions from convective to synoptic scales; hence, the

results establish an upper bound on the extent to which we

could predict the weather if we had a perfect model and

nearly perfect initial conditions.

Errors grew in accordance with the conceptual model

proposed by Zhang et al. (2007); that is, initial error

growth was tied to moist convection. The convective-

scale errors quickly grew in scale, magnitude, and spatial

extent while contaminating the mesoscale. Error growth

during this convective-mesoscale phase was consistent

with predictability theory pertaining to k25/3 turbulence

except that errors did not grow by cascading from

smaller to larger scales but grew up in magnitude at all

scales. After about 2 days, the errors began to affect the

synoptic scales and continued to grow with the back-

ground baroclinic instability. During the baroclinic

phase, error growth was consistent with predictability

theory pertaining to k23 turbulence.

The fact that initial error growth resembled the k25/3

turbulence case—the error peaks at the smallest resolved

scales and the growth rate decreases monotonically—is

evidence that the atmosphere possesses a finite limit of

predictability, which, in a global average sense, seems to

be between 2 and 3 weeks. This estimate is in line with

previous studies that used much lower-resolution models

and remarkably close to the ‘‘16–23 days forecast skill

horizon’’ noted by Buizza and Leutbecher (2015). It is

also broadly consistent with the 15–30-day limit that was

determined by Bretherton and Khairoutdinov (2015)

using a global convection-permitting aquaplanet model.

This result implies that, evenwith the prospect of superior

future technology, it is most likely not possible to predict

the weather beyond one month.

The underlying problem that limits predictability is the

rapid error growth during the convective-mesoscale phase.

To make this issue more transparent, consider these two

hypothetical cases: 1) all scales of motions are correctly

specified except for some random noise, and 2) only

synoptic-scale motions are correctly specified, while the

error on all other scales is saturated from the beginning.

Case 1, which from today’s perspective sounds like science

fiction, would extend the predictability horizon by maxi-

mally two days relative to the more realistic case 2. In the

end, the rapid error growth on small scales provokes

questions about the practical value of convective-scale

data assimilation and future operational GCPM pre-

dictions. From a predictability perspective, it seems un-

likely that GCPMs can drastically improve deterministic

forecasts of mesoscale weather phenomena over the cur-

rent approach, which is to run lower-resolution global

models in conjunctionwith convection-permitting regional

models. Durran and Weyn (2016) and Weyn and Durran

(2017), who studied mesoscale convective systems in ide-

alized simulations with even finer grid spacings, arrived at

similar conclusions. One area where GCPMs may be

useful is to provide tropical cyclone track and intensity

forecasts from a single source, but more research is nec-

essary to test this hypothesis.

On the other hand, the above interpretation may be

unduly pessimistic in light of the spectral predictability

analysis in section 6b, which suggested that mesoscale

flow may have longer predictability than commonly

thought (especially the flow closer to the surface). It is

not yet clear whether this extended predictability is due

to climatological features, but the results instill hope

that there is potential for longer predictability of pro-

cesses such as convective initiation, which are rooted in

the boundary layer. This potential predictability could

be exploited with GCPMs. Furthermore, the notion that

GCPMs may not lengthen the predictability horizon of

small-scale high-impact weather phenomena does not

mean that GCPMs are not valuable. For example, be-

cause of explicitly resolving convection, GCPMs may be

able to reduce the longstanding biases of current NWP

models in the tropics and, more generally, lead to an

overall gain in forecast accuracy because of an increased

realism in the way the atmosphere is modeled.

-5 

-3 

6Δ 

FIG. 14. Background spectrum (black) and error spectra (red) of

Z500 variance. The error spectra are valid at 1, 2, 4, 8, and 15 h and

1.25, 2.5, 5, 10, and 20 days. The vertical gray line denotes the ef-

fective model resolution (24 km).
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FIG. 15. Red dots show the predictability limits of the divergent, rotational, and total wind as a function

of wavenumber at the indicated vertical levels. The predictability limit is defined as the time at which the

error reaches 95% saturation. If the error does not reach 95% saturation, no value is plotted. Orange dots

show the same as red dots, but for a threshold of 60% error saturation.
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Despite being a considerable undertaking from a com-

putational, data storage, and data analysis standpoint, this

study has several limitations. First, it is only a case study

with a small number of ensemble members. Second, the

possible effect of the ocean on atmospheric predictability

could not be addressed. Third, this study relied on classic

predictability metrics, (i.e., Eulerian squared differences

evaluated at grid points). These metrics are not useful for

assessing the predictability of meteorological phenomena

that are localized and intermittent (e.g., Mapes et al. 2008;

Ngan and Eperon 2012; Potvin et al. 2017). The issue can

be illustrated with the following example: Fig. 16 shows

two realizations of Typhoon Son-Tinh, one from the

control simulation and one of its identical twins, at fore-

cast day 7.5. The typhoons are in almost identical locations

and closely resemble each other, which implies high pre-

dictability. At the same time, the error spectra in Fig. 12

suggest that at day 5, the mesoscale spectrum is almost

saturated and there is considerable error at synoptic

scales. The difficulty to reconcile the classic predictability

view with the predictability of specific phenomena or

‘‘objects’’ motivates future research into objects-based

predictability metrics that can explicitly quantify the pre-

dictability of discrete meteorological phenomena.
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