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a b s t r a c t

Ocean prediction systems rely on an array of assumptions to optimize their data assimilation schemes.
Many of these remain untested, especially at smaller scales, because sufficiently dense observations
are very rare. A set of 295 drifters deployed in July 2012 in the north-eastern Gulf of Mexico provides
a unique opportunity to test these systems down to scales previously unobtainable. In this study, back-
ground error covariance assumptions in the 3DVar assimilation process are perturbed to understand the
effect on the solution relative to the withheld dense drifter data. Results show that the amplitude of the
background error covariance is an important factor as expected, and a proposed new formulation pro-
vides added skill. In addition, the background error covariance time correlation is important to allow
satellite observations to affect the results over a period longer than one daily assimilation cycle. The
results show the new background error covariance formulations provide more accurate placement of
frontal positions, directions of currents and velocity magnitudes. These conclusions have implications
for the implementation of 3DVar systems as well as the analysis interval of 4DVar systems.

Published by Elsevier Ltd.

1. Introduction

Ocean prediction across the globe has made great advances in
recent decades (Bell et al., 2009). Its success depends critically on
the process of assimilation that continually corrects a prior forecast
with recent observations, a process utilized in meteorology for dec-
ades (Kalnay, 2003). Recent observations, prior information (a
background state, denoted as xb) and dynamical understanding
are combined to construct an optimal state estimate as an initial

condition for the subsequent forecast period (Malanotte-Rizzoli,
1996). To do so, assumptions must be made about the relationship
between the observations and amongst the background state vari-
ables and about the uncertainty in each. In particular, the error
covariance of the background state, denoted as Pb, is a key piece
of information as Daley (1996) points out: ‘‘The most important
element in the statistical interpolation algorithm is the background
error covariance. To a large extent, the form of this matrix governs
the resulting objective analysis’’. Specification of appropriate
covariances is difficult as stated by Talagrand (2003) ‘‘Construction
of these error estimates is the most challenging and scientifically
important task.’’ Without confidence in the formulation, the
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prediction process becomes suspect as Bennett (2002) points out,
‘‘It is difficult to develop covariances. It follows that the resulting
inverse estimate or analysis of the circulation also lack credibility.’’
Yet formulations of Pb are rarely tested due to insufficient observa-
tions (Brasseur et al., 2005). That there is room for further
improvement is suggested by isolated examples, such as the one
detailed in Section 2.

The ocean is severely under-sampled in both space and time,
hindering advances of many studies (Derber and Rosati, 1989).
The satellite era revolutionized ocean science in that respect:
Since 1992, the continual presence of satellite altimeters in
particular provides a preponderance of information on ocean
variability across the globe (Fu, 2010). However, the satellite
altimeter constellation remains inadequate for providing synoptic
observations even of just the two-dimensional mesoscale field at
the ocean surface along with associated fronts and eddies. Le
Traon and Dibarboure (2002) demonstrated in the Gulf of Mexico
that the lack of observation results in substantial errors in
estimating eddy frontal positions. The ability to draw clear con-
clusions from prior examinations of possible specifications for
Pb is limited by the lack of data (Lermusiaux, 2002). As xb is often
provided by a prior model forecast, Gawarkiewicz et al. (2011)
estimate Pb by evaluating a prior forecast with subsequent obser-
vations made northeast of Taiwan, thus relying on a single sample
to estimate a subset of Pb. It is difficult to obtain a large enough
number of independent forecast events to gain statistical confi-
dence. Consequently, the fundamental question remains: To what
degree are assimilation assumptions leading to errors in ocean
state estimation?

Our purpose here is to systematically evaluate several key
assumptions of the ocean data assimilation methodology by utiliz-
ing the rich drifter data set of the Grand Lagrangian Deployment
(GLAD). The Consortium for Advanced Research on Transport of
Hydrocarbon in the Environment (CARTHE) deployed 295 CODE-
type drifters in the northeastern Gulf of Mexico on July 20–July
31, 2012 (Poje et al., 2014; Olascoaga et al., 2013; Coelho et al.,
2014). The unprecedented data density achieved by this campaign
makes the assessment possible by sustaining coverage at high
spatial density over several mesoscale ocean features and over
two months. The primary focus here is on the lower frequency
mesoscale circulation in the deep water as this is the typical
dynamical target of operational ocean assimilation systems. The
assimilation systems are designed to constrain the mesoscale,
and thus the higher frequency solutions have forecast skill
that is a function of the external forcing and the dynamical
representation.

We investigate independent perturbations of several aspects of
the Pb formulation, evaluating the resulting forecasts against the
dense GLAD drifter observations, which are not assimilated. Per-
turbed features include the amplitude of the background error var-
iance, horizontal correlation length scales, flow dependent
variations in correlations and time decorrelation scales. While
the system employed here is an implementation of 3DVar, the find-
ings also impact parameter choices for 4DVar systems, which are
becoming more popular (Cobas-Garcia et al., 2012; Janeković
et al., 2013; Ngodock and Carrier, 2014). The detailed study pre-
sented here permits the assessment of the relative importance of
each of the tested pieces of the specification of Pb. It also provides
guidance for appropriate parameter choices, in particular the dec-
orrelation time scales.

After presenting an example to motivate the search for
improved data assimilation in Section 2 and a synopsis of the GLAD
experiment in Section 3, we provide details of the model setup and
the experiments with perturbations on the assimilation back-
ground errors in Section 4. The results are examined in Section 5,
with discussion in Section 6 and conclusions in Section 7.

2. Are our assumptions suspect?

An example from the GLAD planning phase illustrates the short-
comings of present assimilation. Daily oceanic condition forecasts
are provided by numerical model systems based on the Hybrid
Coordinate Ocean Model (HYCOM) and the Navy Coastal Ocean
Model (NCOM), both using the same data through 3DVar assimila-
tion within the Navy Coupled Ocean Data Assimilation (NCODA)
system (Barron et al., 2006, 2007; Cummings et al., 2009; Martin
et al., 2009; Rowley, 2010; Rowley et al., 2010; Metzger et al.,
2010; Smith et al., 2011).

Satellite-observed chlorophyll provides an indication of
Lagrangian material transport. Lagrangian Coherent Structures
(LCS), which outline material transport patterns (Haller and
Yuan, 2000; Haller and Beron-Vera, 2012), are computed from
HYCOM and NCOM model surface currents and compared to the
chlorophyll observations (Fig. 1). In Fig. 1a, the chlorophyll plume
from the high productivity area around 29�N 88�W has spread to
the southeast. At 26�N 86.5�W, the plume turns and extends north-
eastward, implying an intense cyclonic feature at roughly 27�N
86�W. The LCS computed from both models cut across the chloro-
phyll plume at 27.5�N 87�W, more than 100 km north of the
observed plume turning. Although chlorophyll is not an ideal tra-
cer, a misalignment of this magnitude indicates poor agreement
between model currents and observed material transport. In par-
ticular, neither system captures the cyclonic turning at 26�N.

The two forecast systems based on HYCOM and NCOM share the
same input data and data assimilation methodology. The sea sur-
face height anomaly (SSHA) along altimeter ground tracks during
this time (Fig. 2) indicates a cyclonic circulation at 27�N 86�W that
is intruding into the Loop Current Eddy (LCE) to the southwest. An
interpolation of this data constructed by AVISO (Pascual et al.,
2006) is used to calculate geostrophic currents, and the LCS based
on the geostrophic currents aligns with the chlorophyll imagery
(Fig. 2).

Given the 3 km model resolution, a second order finite differ-
ence can reasonably represent first order derivative wavelengths
of 24 km and larger, and it can represent nonlinear terms such as
advection of momentum at 48 km and larger wavelengths. These
are scales smaller than those resolved by the satellite data. The
numerical models will produce realistic dynamical processes that
are unconstrained and hence could exhibit substantial differences
relative to observations. However, the mislocation relative to the
chlorophyll in Fig. 1 is on the order of 100 km, the same discrep-
ancy occurs in both dynamical systems and the feature is resolved
in the satellite derived LCS in Fig. 2. The conclusion is that the
altimeter data contain the essential mesoscale features but the
data assimilation used to correct both models is faulty. Clear visi-
ble satellite images such as this are relatively rare. Evaluations
are qualitative and provide only one snapshot. Thus it is difficult
to conduct a considered evaluation of possible error sources with
only this data. Fortunately, the drifter observations from GLAD
prove to be quite valuable.

3. The GLAD experiment

The drifters are similar to the CODE drifter design (Davis, 1985;
Ohlmannet al., 2001),which intends tomeasure theupper1 maver-
aged currents. Table 1 summarizes the deployment locations, dates,
number of drifters in the groups (LSS, S1, S2, T1, L1, L2) and initial
ocean conditions. Fig. 3 shows the number of active drifters during
the experiment. Initial group deployment positions are noted in
Fig. 4. Initially, the reduction in the number of drifters is due to fish-
ermen recovering some, and Hurricane Isaac inflicts damage on the
observation system in lateAugust. The slowdegradationover time is
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due to the limited battery life, andmore than 100 units continued to
report at the end of September 2012. Drifters report positions at 5-
min intervals determined byGPS so that inferred velocities are quite
accurate. Data gaps occurmostly due to adverseweather conditions,
which require careful data processing toproduce accurate trajectory
and velocity estimates. Details on the drifter experiment and
processing are provided in Olascoaga et al. (2013) and Coelho et al.
(2014).

Fig. 4 schematically depicts the main circulation features which
drifters encounter during August and September. As seen in Fig. 5,
the drifter trajectories and model circulation indicate substantial
mesoscale activity in this region of the Gulf. The main features
are reproduced in the model. Typical discrepancies are misplace-
ment of features such as August 22 where the cyclone at 87.5�W
27�N is observed further south than estimated by the model.
Reproducing the shingle cyclones on the edge of the Loop Current
Eddy is particularly difficult.

The drifter-inferred velocity spectral content is summarized by
computing rotary spectra that contain the cyclonic (counterclock-
wise) and anticyclonic (clockwise) components (Fig. 6). The spectra
are computed by averaging over all drifters the amplitude squared
for each rotary component, and the amplitude spectrum is the
square root of the averaged value. The spectra for both rotary com-
ponents are dominated by low frequency motions due to the meso-
scale circulation, both cyclonic and anticyclonic with greater
energy in the cyclonic counterclockwise circulation. Also of signif-
icance is the clockwise energy surrounding one cycle per day (cpd)
due to inertial oscillations. The inertial oscillations are a dominant
feature in the observations driven by wind events, and thus are not
stationary. Wind events generate inertial oscillations localized in
time resulting in energy surrounding the inertial period spread
over a wide band. A small peak near the M2 tidal frequency just
under 2 cpd is also apparent. Both the inertial and semidiurnal
bands contain high coherence between model and drifter spectra
as will be shown later. The assimilation systems alter the energy
at low frequencies during each analysis cycle. The variability below
about 0.75 cpd is the focus of attention to understand how
assumptions in the assimilation system affect predictability.

The remainder of this section provides a short description of the
mesoscale features affecting the drifters over the two months. The
experiments are compared relative to these features to understand
with which features errors are associated. The Loop Current during
July extends far northwest into the Gulf of Mexico, and the LCE
detached just prior to the deployment, dominating the area south
of the deployments. The LCE northern boundary is at about 27�N
throughout the experiment. The eastern LCE boundary moves from
86�E to 88�E during August through September.

The general features are shown schematically in Fig. 4. The First
Cyclone (FC) advects to the east along the periphery of the LCE, and
by August 22, the FC begins to merge with the second cyclone (SC
initially at 28�N 87�W). The SC advects the FC southward, substan-

R1 HYCOM 

Fig. 1. Satellite-inferred chlorophyll from the MODIS Aqua sensor on July 12, 2012, in color. The red line qualitatively shows the core of the chlorophyll distribution.
Superimposed are black lines of the Lagrangian Coherent Structures computed using the evolving model surface velocities from the NCOM R1 experiment (left) and HYCOM
(right).

Fig. 2. The satellite SSHA from Jason-1, Jason-2 and CryoSat-2 (top) during the
35 days prior to July 19, 2012, indicate a cyclonic feature at 27�N 86�W. The July 12,
2012, satellite-inferred chlorophyll image from Fig. 1 with LCS computed from the
geostrophic velocities of the AVISO composite of these data (bottom). The red line is
the same as in Fig. 1, which is used to identify the chlorophyll core.
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tially deforming the LCE front, and the FC and SC eventually merge.
Northeast of the SC, an anticyclone (AC) is situated over the Florida
shelf within the area from the 500 m to 100 m isobaths. During
August, between the SC and AC along the 1000 m isobath, the flow
to the northwest turns along the edge of the DeSoto Canyon to the
southwest. Progressing through September, this northwestward
flow moves into deeper waters impinging on the DeSoto Canyon
and turning to join the westward coastal flow.

Development of the drifter sampling of the features is shown in
Fig. 5. The S1 drifters advect slowly to the southwest initially and
then flow to the east between the FC and LCE. The drifters become
widely dispersed in September flowing back to the northwest. S2
initially straddles a separatrix with the western half of the drifters
in the Mississippi River freshwater outflow (observed by the
deploying ship) moving toward the south and southwest through
the DeSoto Canyon and then to the east along the LCE. These drift-
ers meet a bifurcation point at 26.7�N 85.7�W (noted in Fig. 4) with
the majority turning northwest and the remainder turning south-
east. The eastern half of S2 rapidly flows southeastward into the
SC. This flow brings the S2 drifters very close to the LCE front on
August 1. On August 8, the eastern S2 drifters move to the
northeastern side of the SC. By August 15, the AC entrains the east-
ern S2 drifters, which then move closer to the Florida coast, and
these persist in the northeastern region throughout September.
Most of the L1 and L2 drifters are initially entrained in the FC. Once
the FC and SC merge, the L1 and L2 drifters cover a large area in the
southeastern quadrant of the area in Fig. 5. The L1 and L2 drifters
gradually then flow back to the northwest. The T1 drifters move
southwest through the DeSoto Canyon and entrain along the front
between the merged FC, SC and the LCE.

4. Assimilation experiments

4.1. General system setup for experiments

The assimilation experiments are based on the forecast system
using NCOM with the 3DVar in NCODA, which are the operational

systems run at the Naval Oceanographic Office for high resolution
areas nested in the global system. The domain is the entire Gulf of
Mexico at 3 km horizontal resolution and 50 vertical levels. Thirty-
four sigma coordinates are used above 550 m depth, and sixteen Z
level coordinates are used below. The sigma coordinate structure
has higher resolution near the surface with the surface layer hav-
ing 0.5 m thickness. Atmospheric forcing is taken from the Coupled
Ocean Atmosphere Mesoscale Prediction System (COAMPS)
(Hodur, 1997), and boundary conditions are from the global NCOM
(Barron et al., 2004, 2006). Typically, altimeter SSHA from Jason-1,
Jason-2, and CryoSat-2 arrive with 24- to 48-h latency, the differ-
ence between observation time and the assimilation time. The
experiments here are run in hindcast, which is different from
experiments run in real time during GLAD in that the data latency
is not an issue.

Table 1
The summary of drifter deployment groups indicating the central location of the group, deployment date and number of drifters deployed.

Drifter group Initial location Deployment date (2012) Number of drifters Pertinent features and initial ocean conditions

LSS DeSoto Canyon Area July 20 20 Large scale survey covering the DeSoto Canyon
S1 28.8�N 88.1�W July 22 90 Initially low southwestward flow
S2 29.2�N 87.6�W July 26 90 Spanning observed Mississippi River fresh water front
T1 29.0�N 87.5�W July 29 30 Head of DeSoto Canyon
L1, L2 27.8�N 89.2�W July 30–31 60 Within first cyclone (FC)

Number of dri�ers over �me

L2 deployment
L1 deployment
T1 deployment
S2 deployment
S1 deployment
Large Scale Survey deployment

Hurricane Isaac

Ini�ally over-zealous fishermen

Fig. 3. The number of actively reporting GLAD surface drifters each day during the
experiment. The initial deployment events are noted as well as significant events
that resulted in drifter loss. Slow degradation over time is the result of limited
battery life.

L1L2

Loop Current Eddy

First Cyclone, FC

An� Cyclone
AC

S1
S2

Second
Cyclone

SC

Coastal Flow

Coastal Flow

Bifurca�on
Point

Second
CycloneLoop Current Eddy

Shingle 
Cyclone

Coastal Flow
Coastal Flow

An� Cyclone
AC

T1

Fig. 4. General circulation features (blue lines) during August 2012 (top) and
September 2012 (bottom) with initial positions of the intensive GLAD drifter
deployment locations (S1, S2, T1, L1 and L2) and initial drift directions (red lines).
The bifurcation point is first reached by S1 on August 31, 2012. During September
the drifters are widely distributed.
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The satellite altimeter SSHA is the dominant information source
for constraining the mesoscale field. Altimeter-observed SSHA is
used with the MODAS vertical covariance information (Fox et al.,
2002) to construct a synthetic temperature and salinity profile,
and the synthetic profile is used in the 3DVar assimilation. All
available in situ data are also used in the experiments, though

there is typically very little information providing synoptic meso-
scale structure from in situ data.

The system runs a daily cycle of assimilation and forecast. All
observations within the data time window Tobs prior to the 00Z
analysis time are analyzed through the 3DVar to produce an anal-
ysis increment, which is added to the model system during an

Aug 1   

Sep 15

Aug 15   

Sep 1

Aug 8   

Sep 22

Aug 22   

Sep 8

Fig. 5. Distribution of GLAD drifters through August and September. The drifter tails indicate the positions over the prior 2 days. The background color is the model sea
surface salinity, and the black vectors are the model surface velocity. The model results are from experiment B6, which has the lowest errors in magnitude of velocity
differences. Colorbar ranges are in Practical Salinity Units.
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increment insertion interval Tins. This interval is 6 h for all experi-
ments except for B2, which uses 24 h. The system divides the
3DVar analysis increment by the number of time steps in the inser-
tion interval, and at every model time step the fractional increment
is added to the state. Note that the data time window Tobs and
incremental insertion interval Tins represent the time correlation
of the assimilation system. Adding the analysis to the initial condi-
tion represents a time correlation function that is a Dirac delta in
time, which is physically unrealistic. Previous experiments show
that changing only the initial condition results in transient waves
and oscillations that can persist for several days in the ocean,
and these transients do not appear when the 6 h incremental inser-
tion interval is used. The incremental insertion interval represents
a boxcar correlation over time with a value of 1=Tins over Tins and 0
elsewhere. Extending the data time window Tobs beyond 1 day
results in observations correcting errors with time scales longer
than 24 h.

4.2. Particular assimilation experiments

The assimilation experiments individually perturb different
assumptions within the background error covariance function.
The 3DVar estimates the analysis increment dx, which is an opti-
mal correction to a background xb given by the deceptively simple
equation (Daley and Barker, 2001):

dx ¼ PbH
T ½HPbH

T þ R��1½y �Hxb� ð1Þ

where Pb is the error covariance of the background state xb, H is an
operator that maps the background state to observations y, and R is
the observation error covariance.

A history of research into Pb exists both in methods for specify-
ing an analytic functional form and in the numerical solution pro-
cess. The mathematical foundation of the convolution integral
(Gaspari and Cohn, 1999), solution through an implicit diffusion
operation (Carrier and Ngodock, 2010) and generalized extensions
of the Gaussian diffusion operation (Weaver and Mirouze, 2013)
work to provide state covariance relations and efficient solutions
based on historical observations or heuristic arguments of scales

of processes such as the Rossby radius of deformation
(Cummings, 2005).

The 3DVar here uses the approach of Brandt and Zaslavsky
(1997) to initially separate Pb into variance Sb and a correlation
function Cb as Pb ¼ S1=2b CbS

1=2
b . A decomposition of Cb into separable

functions is then made:

Cbðx; y; z; t;v ; x0; y0; z0; t0; v 0Þ
¼ Chbðx; y; v; x0; y0;v 0ÞCvbðz; v; z0;v 0ÞCfdbðx; y;v ; x0; y0;v 0Þ ð2Þ

The correlation between two variables v and v 0, at horizontal
locations x, y and x0, y0, and vertical positions z and z0 is the product
of the separable components of horizontal Chb, vertical Cvb and flow
dependent Cfdb correlation functions. This separation of variables is
relatively typical since there is not sufficient a priori information to
provide the full space-lagged correlations between all variables as
the relations change throughout the globe. Such decomposition is
applied in general circulation models (Derber and Rosati, 1989),
the Harvard Ocean Prediction System (HOPS) (Lozano et al.,
1996), MERCATOR (Brasseur et al., 2005), the Forecasting Ocean
Assimilation Model (FOAM) (Martin et al., 2007) and the Climate
Forecast System (CFS) reanalysis (Saha et al., 2010). Because Pb is
a strong controller of the solution, additional approaches for its
specification are considered, and these are discussed further in
Section 6.

The vertical correlations Cvb are computed using a Gaussian
function with length scales based on the density gradients of the
background profile. Note that we do not test perturbations of the
vertical correlations. The altimeter observations are used in
conjunction with the correlations based on historical in situ
profiles to estimate synthetic temperature and salinity profiles that
are subsequently provided to the assimilation. The correlations
change bi-monthly and spatially. Thus, the assimilation process
uses synthetic profiles that have the historically observed vertical
correlation impressed on them. The vertical correlations in the
assimilation will tend to smooth the synthetic profile vertical
gradients. Formally, the vertical correlations in Pb should be based
on the observed correlations rather than constructing synthetic
profiles prior to the assimilation. Since the synthetic profiles are
based on historical data, we believe these have the least probability
of error, and we have no other proposed superior source on which
to test.

Horizontal correlations Chb are computed using a second order
auto-regressive function (SOAR) (Gaspari and Cohn, 1999) with a
length scale based on the Rossby radius of deformation, and a
geostrophic coupling component is included to relate velocity
and geopotential height. Thus, the analysis is in geostrophic
balance. The flow-dependent correlations are Cfdb ¼ ð1þ sf Þe�sf ,
where, sf ¼ dðSSHÞ=dh; dðSSHÞ is the difference in model forecast
SSH between two observation locations, and dh is the specified
flow dependence scale factor, which is expressed in centimeters.
This increases the correlations between points that have little
SSH difference and decreases correlation across SSH gradients.
The SSH field is used in the flow dependent correlation under the
assumption that the flow is in geostrophic balance and directed
along pressure surfaces due to mesoscale features. Obviously some
processes such as tides are not aligned with this assumption. How-
ever, spatial scales for tides are typically well separated from the
mesoscale in the deep ocean. Thus it is not expected to be a signif-
icant problem. The flow field itself could be used in the formula-
tion, though some influence of the tidal signal would still contribute.

The 3DVar approach assumes all observations occur at the anal-
ysis time, and thus time is not explicitly stated in Eq. (1). Time
scales in the ocean are long, and attempts to take the time correla-
tion into account mainly consist of including observations over a
data window Tobs that is long. MERCATOR assimilates altimeter

Cycles per day 

Fig. 6. Counterclockwise (top) and clockwise (bottom) rotary amplitude spectra.
The rotary amplitude squared spectra are computed independently for each drifter,
averaged over all drifters, and the square root is plotted. The vertical line across the
two plots is the M2 (1.93 cpd) frequency. The grey vertical grey bar (0.91–0.98 cpd)
is the inertial oscillation range between 27 and 29�N.
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data covering the prior 7 days in an assimilation cycle that occurs
every 7 days, FOAM has a daily assimilation cycle with data used
over multiple cycles and an error variance increasing linearly with
data age, the Bluelink Ocean Data Assimilation System (BODAS)
(Oke et al., 2008) uses an 11-day Tobs to assimilate observations
and CFS conducts a 6 h assimilation cycle using data in the prior
10 days with a weighting based on data age. Cummings et al.
(2009) use a 1-day Tobs and daily assimilation cycle. Formally,
observations should be assimilated only once. Otherwise observa-
tion error variances are not accurate. A long time between assimi-
lation cycles implies that new data could improve the forecast but
is not having an impact. While a one day assimilation cycle does
use newly acquired observations, it does not allow a long time per-
iod correlation. Thus, consideration of the observation time win-
dow also is an open question to be addressed.

To determine the impact of the background error covariance
components, one experiment is run for each postulated error
source with changes in the system relevant for testing the specific
sensitivity. The independent changes allow the results to be inter-
preted more easily. The main parameter settings are summarized
in Table 2.

For the first set of experiments (denoted with R for the first set
of runs), details in the error variance amplitude formulation, hori-
zontal correlation scale, the flow dependence, the data time win-
dow and the incremental insertion interval are as follows:

R1: This run is set up identically to the experiment run in real
time during the GLAD deployment, though data latency is not
an issue. All subsequent experiments in the first set are devia-
tions from this initial experiment. The data time window Tobs

includes all observations obtained within the prior 24 h, and
the analysis increment insertion interval Tins is 6 h. Horizontal
correlation scales are on average 21.2 km. The background error
variance is a function of spatial position including horizontal
and vertical. It is computed based on changes in the 24 h fore-
cast state over the prior 10 analysis cycles. Given a 24 h forecast
xf
i from prior cycle i, we calculate the weighted average of

squared differences
P�1

i¼�10wiðxf
i � xf

i�1Þ
2
which is the weighted

sum of squared differences the 24 h forecast ocean state from
different forecast cycles (i and i� 1), where the weights wi

are given by Cummings and Smedstad (2013). Areas in which
observations produce large differences between two forecasts
result in larger variances. This is an advantage to the algorithm
as errors are based on observation impact to the forecast. In
areas that are not observed for some time, the main contributor
to the background error variance results from model time-var-
iability. This is a drawback due to the sparse sampling of the

ocean in which areas unobserved for some time result in small
differences between background and analysis. Thus, an under-
estimation of error variance is expected.
R2: If the background variance amplitude Sb is too small, the
analysis may favor the background over the observations, so
we test a second error variance estimation approach in R2. At
the conclusion of each analysis, the forecast error variance Sf

is computed, and this becomes the background error variance
for the subsequent cycle. The forecast error variance in R2 is
computed through four contributions:

Sf ¼ I� HTPbHþ R
� ��1

� �
Sb þ cf

X1
i¼�10

wi xf
i � xf

i�1

� �2

þ ca
X0

i¼�10

wi dxað Þi2 þ cc Sc � Sbð Þ ð3Þ

During the analysis cycle, we compute the formal error variance

reduction given by I� HTPbHþ R
� ��1

� �
Sb, which accounts for

the observation distribution and observation errors, and this
provides the error variance at analysis time. To represent error
variance at the subsequent analysis time, this variance must
increase. Three sources of error growth are sequentially added
to produce the forecast variance amplitude.
The first error growth source is the same as in R1 and is added
with a timescale cf ¼ 1=2. The second growth estimate is given

by ca
P0

i¼�10wiðdxiÞ2, where dxi is the analysis increment pro-
vided by (1) from the prior assimilation cycle i, and wi are
weights equal to those in the first term. This accounts for the
recent history of forecast error measured by observations. This
estimate is added to the forecast error with ca ¼ 1=10. Note, this
estimate is similar to the estimate in R1 in that it can only be
non-zero where the ocean is observed, and this contribution
to the algorithm only affects areas with recent observations.
The third error growth is given by ccðSc � SbÞ, which compares
the climatological variability Sc stored in the Generalized Digi-
tal Environmental Model (GDEM) database (Carnes et al.,
2010) with Sb, and we increase the forecast error toward the cli-
matological estimate with cc ¼ 1=20. This value generally pro-
vides an upper limit on variance amplitude in the thermocline
in the absence of observations. In practice, the final forecast var-
iance amplitude shows the desired behaviors: the forecast error
estimate is reduced where observations have corrected the
model state, in areas with observations it is consistent with
background minus observation differences, and it increases
toward a climatological estimate as the ocean is not observed
for days to weeks. This forecast error variance amplitude is

Table 2
The parameters for the model experiments are noted. The background error variance formulations used in the experiments are denoted as R1 or R2, as described in the text. A
smaller flow dependent scale factor results in smaller horizontal correlation scales perpendicular to the flow and longer ones parallel to the flow. The data time window is the
period relative to the analysis time over which observations are included in the analysis. The increment insertion interval is the time period during a hindcast over which the
analysis increment is added to the system.

Experiment Background
error variance

Average horizontal
correlation scale (km)

Flow dependent scale
factor dh (cm)

Data time window Tobs Increment insertion
interval Tins (h)

R1 R1 21.2 12 �24 to 0 h 6
R2 R2 21.2 12 �24 to 0 h 6
R3 2 * R1 21.2 12 �24 to 0 h 6
R4 R1 12.6 12 �24 to 0 h 6
R5 R1 21.2 12 �7 to 0 days 6
B1 R2 21.2 6 �7 to 0 days 6
B2 R2 21.2 6 �7 to 0 days 24
B3 R2 12.6 6 �7 to 0 days 6
B4 R2 38.5 3 �7 to 0 days 6
B5 R2 21.2 6 �14 to 0 days 6
B6 R2 21.2 6 �7 to 0 days 6
B7 R2 21.2 6 �7 to +7 days 6
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the background error variance amplitude for the subsequent
analysis cycle. The parameters of Eq. (3) cf , ca and cc can be
optimized through either a forward perturbation or inverse
estimation approach. Positive results here indicate increased
skill using the new formulation, and thus it would be valuable
to determine optimal settings of the parameters in the future.

R3: As a reference between the background error covariance of
R1 and R2, this experiment uses an error variance double that of
R1. This background error variance is larger than R1 though still
much smaller than R2. The results of this experiment do not
produce significant improvements.
R4: The LCS results (Fig. 1) indicate that the spatial scales of
model features are relatively large compared to those in the
satellite observations. Reducing the horizontal correlation scale
to 12.6 km is proposed for the assimilation system to represent
the smaller scales appearing in the satellite altimeter data. The
results indicate this did not provide a substantial effect.
R5: This experimental case lengthens the data time window Tobs

to 7 days. In many prior marine rapid environmental assess-
ment exercises, the first step is to conduct a precursor large area
survey to provide a large domain snapshot of dominant regional
features used to initialize forecasts (Leslie et al., 2008;
Gawarkiewicz et al., 2011; Lermusiaux, 2002). These surveys
are repeated on a regular basis throughout the full experiment
period alternating with adaptive surveys targeting the local fea-
tures of interest. Operators required accurate local features
determined by a full range of multiple dynamical scales. Assim-
ilating only small isolated information is not sufficient for fore-
casts from local model nests to be dynamically balanced with
the surrounding larger scale features (Robinson, 1997). Thus,
broad information is also required. On a daily basis, very iso-
lated lines are observed by satellite in the Gulf of Mexico. Ini-
tialization of the Gulf of Mexico model using a wide area ship
synoptic survey is not feasible. However, during a 7 day period,
satellite altimetry provides wide coverage of the Gulf and could
be used to produce a fuller domain picture. Given these consid-
erations, instead of using the 24 h of data as in R1, 7 days of data
could provide more complete information on the larger scale
quasi-synoptic structure. Since the observation error levels are
not changed from R1, the repeated use has the detrimental
result of effectively increasing data weight. This limitation
may lead to some distortions of the local dynamical features
and is addressed later in experiment B6.

Comparison of the LCS from the first set of experiments shows a
better qualitative match with the chlorophyll patterns in R5
(Fig. 7). To compute the LCS we adopt Haller and Beron-Vera’s
(2012) proposed geodesic theory. This theory leads to (attracting)
LCS at any time t0 as locally minimally stretching strainlines
obtained from a backward flow computation from t0 to
t0 � T; T ¼ 30. Such strainlines are (material) curves tangent to
the contractional eigenvector field of the Cauchy–Green strain ten-

sor, given by Ct0�T
t0

ðx0Þ ¼ dFt0�T
t0

ðx0Þ
h i�

dFt0�T
t0

ðx0Þ. Here x0 is the posi-

tion of a fluid particle at time t0 and Ft0�T
t0

ðx0Þ is the deformation
tensor at the particle position at time t0 � T , which follows from
solving the fluid particle motion equation _x ¼ vðx; tÞ, where
vðx; tÞ is the fluid velocity field, and the asterisk represents a con-
jugate transpose.

The analysis of this first set of experiments is discussed in Sec-
tion 5. The results indicate that the background error variance of
experiment R2 provides improvement. Comparison to chlorophyll
suggests an improvement in direction of currents in experiment
R5, and the implication is that there is a long time correlation in

the background errors that should be addressed. However, drifters
suggest experiment R5 contains shortcomings in the magnitude of
the currents. Based on this, a second set of experiments is defined
denoted with a B as the second set of runs:

B1: This is a combination of the modified background error var-
iance used in R2 and the lengthened data time window of R5
using the 7 day data time window. All subsequent experiments
in this second set are a perturbation from this reference. The
flow dependent scale factor dh is decreased in the B experi-
ments, which results in increasing observation correlation in
the direction of constant geopotential and decreasing correla-
tion in the perpendicular direction.
B2: This is the same as B1, except that the increment insertion
interval Tins is increased from 6 h to 24 h. Using a 24 h interval
would be expected to produce more realistic correction to the
background state, though a shorter increment insertion interval
requires less hindcast time. Thus, there is motivation to reduce
the increment insertion interval from the computational cost
perspective. Results show this parameter has a negligible effect.
B3: The horizontal correlation scale is again tested in combination
with the long timedatawindowby reducing the value to 12.6 km.
The results again did not show significant improvement.
B4: The horizontal correlation scale in the direction of constant
surface geopotential is increased in this experiment by chang-
ing the flow dependent scale factor dh and changing the hori-
zontal correlation scale. The flow dependent scale factor
increases horizontal correlation scales in the direction of the
constant geopotential and decreases scales in the direction per-
pendicular. At the same time, the horizontal correlation scale is
increased to 38.5 km. The result of these two effects is to main-
tain the same horizontal correlation scale perpendicular to the
flow and greatly extend the horizontal correlation scale parallel
to the flow. The purpose is to extend observation influence fur-
ther in the direction of flow. This experiment did not result in a
positive improvement.
B5: This experiment doubles the data time window to 14 days
from the 7 days used in B1. The results do not demonstrate
increased skill.
B6: Experiment B1 uses observations multiple times because of
the 7-day data time window, and this process is formally incor-

 

R5

Fig. 7. LCS structures from the experiment R5 superimposed on MODIS chlorophyll
image on July 12, 2012. The change in the data time window Tobs in R5 produces the
best agreement from the first set of experiments. The red line is the same as in
Fig. 1, which is used to identify the chlorophyll core.
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Aug 21   

Aug 22   

Aug 23   

Aug 24   

Aug 25   

Aug 21   

Aug 22   

Aug 23   

Aug 24   

Aug 25   

Fig. 8. Background error standard deviation Sb of 190 m temperature on 2012 August 21 through 25 (top to bottom rows), from experiments (left) R1 and (right) R2.
The circled area indicated on August 23 contains reduced variance from observations on August 22 (Fig. 10). Note the different colorbar ranges for R1 (0.25–0.75 �C) and R2
(0–2 �C).
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rect. Given the observation error levels, using observations
more than once results in the solution matching the observa-
tions more than it should, and the analysis is more susceptible
to noise in the data. A correct method to use observations once
and provide a long time correlation would be to use a data time
window of 1 day and extend the incremental insertion interval
over multiple days. As previously discussed, the system divides
the analysis increment by the number of time steps in the incre-
ment insertion interval. Thus the difference between inserting
over one day and inserting over 7 days is dividing the analysis
increment by a factor of 7. This experiment is the same as B1
(daily cycling with a 7 day data time window and 6 h incremen-
tal insertion interval) with the exception that the analysis incre-
ment is divided by the number of days in the data time window.
This is intended to emulate using observations in one analysis
with an analysis increment insertion interval of 7 days with a
correlation that is constant in time throughout the 7 days. This
is not an entirely correct emulation since the analysis incre-
ment influence of single observations changes from one day
to another as the background, and thus observation minus
background changes.
B7: As a reanalysis, it is possible for data in the future to affect
the analysis time as well as data in the past. This experiment
uses a data time window that is �7 days to +7 days relative to
the analysis time. Results did not indicate a significant benefit.

5. Results

5.1. Background error variance amplitude and time correlation

The background error variance amplitude Sb formulation is a
strong controller of the solution. Fig. 8 provides a comparison of
Sb over several days computed by the error variance formulations
in R1 and R2. The amplitudes are roughly a factor 5 larger in R2
compared to R1 (note different colorbar ranges in Fig. 8 for R1
and R2). The estimated error variance amplitude Sb is evaluated
relative to the observed errors in the background field ðb� oÞ. At
each depth d, with Nd subsurface observations during the experi-
ment, an estimate of background error variance in temperaturecSd is computed as

cSd ¼ 1
Nd

XNd

i¼1

bdi � odi
� �2 ð4Þ

where the background field is interpolated to the observation loca-
tion. For comparison, the estimated background error variance Sb in
experiments R1 and R2 are sampled at the observation locations
and averaged over the experiment time. Fig. 9 compares the square
root of the error variance from R1 and R2 to the estimate cSd . The
variance values of Sb should be less than those of cSd since observa-
tion representation errors and noise contribute to cSd in addition to
the background errors. Fig. 9 shows the Sb in experiment R2 is a bet-
ter representation than experiment R1 when compared to observa-
tion minus background variance at most depths. The typical
thermocline and halocline depths are about 200 and 250 m respec-
tively in the eastern Gulf of Mexico. Results from R2 indicate the
background error variance Sb computed by the algorithm in Eq.
(3) provides a good representation of the estimated cSd , though
the algorithm provides a slight over estimate. One reason for the
apparent over-estimation may be that the observations are mainly
the synthetic profiles generated from the altimeter data. The syn-
thetic profiles will contain less variance than real profiles.

The R2 increment fields (Fig. 10) reflect the location of satellite
tracks. In R2, the background error variance reduction based on
observation locations and error levels is computed and subtracted
from Sb, and then the error growth terms are added according to

(3). This becomes the background variance for the successive analy-
sis cycle on the next day, so that observation impacts on Sb are seen
in the background variance on the following day. One example is
indicated by the circles in Figs. 8 and 10. On August 22, observations
over the western Gulf of Mexico (Fig. 10) produce background error
variance reduction on August 23 (Fig. 8). The background error var-
ianceon successivedays (Fig. 8) shows the impact of relaxing toward
climatological variability in areas that have no observations as the
error variance under prior observations gradually increases.

The second important factor is the correlation time scale of the
background errors. The increments are compared between R2 and
B1 (Fig. 10), which both use the same Sb. B1 has a 7 day data time
window vs. 1 day for R2. For example, on August 21 there are
increments along the satellite track transiting from 20.5�N 83�W
to 30.5�N 86�W (encompassed by the box in Fig. 10). In experiment
R2, the increments occur along this track only on August 21. In
experiment B1, the increments appear on August 21, and subse-
quent days also show the increments with amplitude diminishing
in time over 3–4 days. If background errors are not correlated over
long times, the second use of the data would have a much smaller
increment and the increment would be more noise than signal.
Additionally, the increments in the case of B1 are generally smaller
than the increments due to the same data in R2, indicating the
background field is closer to the observations in B1.

The increment fields on August 21 of experiments B1–B7
(Fig. 11) indicate the effects of the increment insertion interval
(B2), the flow dependent correlations (B3 and B4), the data time
window (B5 and B7), and emulating the long time correlation
(B6). The main improvement relative to the drifters occurs in B6
in which the analysis increments are divided by the data time win-
dow resulting in much smaller values.

5.2. Evaluation through GLAD observations

The unassimilated GLAD drifters serve as independent evalua-
tion data. Each experiment is sampled at the latitude and longitude
location of each drifter. The velocity vectors are computed every
3 h, resulting in over 100,000 observations. The 3-h sampling
observes the same mesoscale eddies for quite some time, thus
the number of independent observations is not the same as the
number of observations. The drifters do cover a wide range of dif-
ferent eddies and associated fronts during the deployment time

Fig. 9. Square root of the specified background error variance averaged over all
observations during the experiment from R1 (solid black) and R2 (dashed black)
compared to the RMS difference of observations minus background from R1 (solid
red) and R2 (dashed red).
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Aug 21

Aug 22

Aug 23

Aug 24

Aug 25

Aug 21

Aug 22

Aug 23

Aug 24

Aug 25

Fig. 10. Analysis increments on August 21 through 25 2012 (top to bottom rows) for (left) R2 with a 1 day data time window and (right) B1 with a 7 day data time window.
Highlighted areas are discussed in the text. These are the corrections to the model state computed by the 3DVar system. Colorbar ranges are in �C.
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period (Fig. 5), thus the number of independent observations is
high during the 60 day experiment period.

An initial comparison is made through the rotary coherence and
phase difference spectra (Fig. 12). The model experiments indicate
high coherence over the mesoscale band from 0 to 0.75 cpd in both
clockwise and counterclockwise spectra with a phase difference
between ±20�. Typically, R2 has higher coherence than R1 in this
band, R5 is lower than R1, and B6 is near the top coherence. As a
reference, geostrophic currents from the AVISO sea surface height
maps are computed, and the statistics for these currents are also
presented in Fig. 12 and subsequent analyses.

The inertial oscillations in the 0.9–1.1 cpd range in the
clockwise spectra show high coherence in the models, though
phase differences are higher. The inertial oscillations are typically
forced by surface wind stress events. The accuracy in the inertial
band is a measure of wind forcing accuracy and dynamical system
response in the surface layer. In addition, coherence is high at the

semidiurnal frequency just below 2.0 cpd, and this is due to tidal
forcing at the boundaries and tidal potential forcing in the interior.

The high frequency (greater than 0.75 cpd) response is primar-
ily a forced response, and the interest at hand is in the low
frequency response that is affected by the assimilation process.
To focus on this variability, model velocities are interpolated
through a bilinear interpolation to the latitude and longitude loca-
tions of the drifters. Then, all the time series of velocities from the
models and those inferred from the drifters are passed through a
Butterworth filter with a 0.5 cpd cutoff. Thus the subsequent error
characterizations are for the low frequency only.

Error histograms over all data are computed (Fig. 13). These are
the fraction of observations within each bin treating magnitude
and direction errors independently rather than binning error in
thevector difference. Thus, skillful systemerror distributions should
be clustered around 0� direction error and small magnitude error.
The distribution for R1 provides the fraction of all observations that

B1

B3

B5

B7

B2

B4

B6

Fig. 11. Analysis increments on August 21, 2012 from experiments perturbing properties relative to B1 including: increment insertion interval (B2), the flow dependent
correlations (B3 and B4), the data time window (B5 and B7), and emulating the long time correlation (B6). Colorbar ranges are in �C.
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fall in each (magnitude, direction) bin. The majority of errors is
clustered around 0� direction and is less than 0.2 m/s. For more
direct comparison, the error distribution of R1 is subtracted from
the histograms computed from other experiments, and the color
bar range is changed to highlight the difference in fraction of obser-
vations between the experiments and R1. Areas of blue indicate

fewer occurrences than R1, and areas of red indicate more occur-
rences. An experiment is performing better than R1 if there is a dis-
tribution of blue away from the center and red near the center and
near 0� as in the distributions of R2 and B6.

A 16 element matrix fully describes cross correlations between
observed and modeled vectors (Crosby et al., 1993), and a range of
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Fig. 12a. Counterclockwise (top) and clockwise (bottom) rotary coherency spectra. A filter with frequency width of 0.1 cpd is applied. The colored lines are the coherency
spectra with vertical scale on the right, and the shaded background is the amplitude spectrum from the drifters as in Fig. 6 with the vertical scale on the left.
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Fig. 12b. Counterclockwise (top) and clockwise (bottom) rotary phase difference. A filter with frequency width of 0.1 cpd is applied. The colored lines are the phase difference
spectra with vertical scale on the right, and the shaded background is the amplitude spectrum from the drifters as in Fig. 6 with the vertical scale on the left.
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statistics are proposed using subsets of these elements. To help
illustrate the results succinctly, we compute cumulative
distributions that show the fraction of the observations with errors
less than a prescribed value. It is useful to examine these across
three statistics: (1) the difference between observed and modeled
magnitude of velocity vector (Fig. 14), (2) difference in direction
measured in degrees (Fig. 15), and (3) the magnitude of the differ-
ence in observed and modeled velocity vector (Fig. 16). The cumu-
lative probability distributions of errors are similar, and small
differences are important. To better highlight the small differences,
the cumulative distribution for experiment R1 is subtracted for
each of the statistics, and the difference between R1 and each
experiment is also presented in the figures. In comparing two
experiments, the distributions with more occurrences at low error

values are performing better. Because these are cumulative distri-
bution curves as a function of error level, the higher (and more
positive) the curve at low error levels, the better the performance.
Only the experiments that demonstrate significant impact beyond
the initial experiments R1 and B1 are shown, which are R2, R5 and
B6. The geostrophic currents computed from direct analysis of
SSHA by AVISO are included as a reference.

R2 is performing overall better than R1 with a higher fraction of
occurrences at low error levels across all statistics. This is confir-
mation that the Sb of R2 is a better representation than the Sb value
of R1. R3, which doubles the Sb of R1, has little impact on the
results. Similarly, R4, which reduces the horizontal correlation
scale using the same error variance amplitude as R1, has little
impact. R3 has a distribution very similar to R1, and R4 performs

R1

R2

R5 B6

AVISO

Fig. 13. Error histograms distributions relative to GLAD inferred velocity observations from R1 (top row). Skillful system error distributions should be clustered around 0�
direction error (toward top of the figure) and small magnitude error. Other experiments are presented as differences in distribution minus the distribution of R1 (second row)
AVISO and R2, (third row) R5 and B6. An experiment is performing better than R1 if there is a distribution of blue away from the center and red near the center and near 0� as
in the distributions of R2 and B6.
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slightly worse. The cumulative distributions are not shown for
these for brevity and clarity.

R5 is the first experiment to include a long data time window
(7 days). Though the initial LCS comparison in Fig. 7 indicates an
improved qualitative comparison relative to the advected chloro-
phyll, the error distribution statistics from the GLAD drifters show
poorer performance than R1. The errors in magnitude of velocity
are the primary cause, and this is also reflected in the magnitude
of the difference between observed and modeled R5 velocities.
The positive comparison to the chlorophyll distribution points
out the risk involved in evaluations based on a small sample set
or metric, which represents one instant in time and only an evalu-
ation of flow direction compared to the chlorophyll.

The comparison between R2 and B1, which both use the same
Sb but have different data time windows (Fig. 10) implies that
background errors are correlated in time. This should be expected.
Many estimates of the error covariance structure start with the
assumption that the scales of the errors are on the order of the
scales of the features themselves. The ensemble optimal interpola-
tion of BODAS (Oke et al., 2008) uses ocean model ensembles to
build the spatial covariance relations. The 11-day assimilation
cycle of this system also points to the use of a long data time win-
dow. Since ocean mesoscale features have time scales of weeks
(Jacobs et al., 2001), it should be expected that errors are correlated
in time. The experiments altering the increment insertion interval
(B2), flow dependent covariance (B3, B4), and additional changes in

the data time window (B5, B7) do not significantly improve the
results.

The experiment combining the new Sb with the emulation of
long time correlation is B6, and this shows the best performance
with the most occurrences of small velocity magnitude error
(Fig. 14), more occurrences of low errors in direction than R1
though not as good as R2 (Fig. 15) and the best performance in
terms of most occurrences of low errors in magnitude of velocity
difference (Fig. 16). The use of a long time window forces the
model solution to match the data within the time window. R5 suf-
fers from the fact that the solution must match the average of the
observations used in the analysis. As the observation time window
increases, the analysis weakens horizontal gradients resulting in
correspondingly weaker currents. Experiment B6 avoids this prob-
lem by applying the analysis increment over a long period with
reduced amplitude that allows the dynamical system to maintain
the horizontal gradients with increased current magnitudes.

Fig. 17 provides a summary spatial distribution of the RMS vec-
tor difference magnitudes in R1, that isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

P
iðumi � uoiÞ2 þ ðvmi � voiÞ2

q
, where umi and uoi are model

and observed velocities respectively. These statistics are computed
in 1/8� bins, and only bins with more than 30 samples are shown.
The data are separated for August and September. Areas of larger
error are situated in the fronts of the mesoscale features, which
move through August and September. The area along the northern

R1
R2
R5
B6

R1
R2
R5
B6

Cumulative distribution

Difference in cumulative distribution

Error in velocity magnitude (m/s)

Error in velocity magnitude (m/s)

Fig. 14. (Top) cumulative distributions of the difference in magnitude of velocity
from the model experiments and the GLAD drifter inferred velocities. (Bottom) to
better visualize the differences, the distribution of R1 is subtracted from all the
experiments. Distributions with more occurrences at low error values are
performing better. Thus B6 is the best performing experiment by this metric.

R1
R2
R5
B6

Error in direction (degrees)

Error in direction (degrees)

Cumulative distribution

Difference in cumulative distribution

Fig. 15. (Top) cumulative distributions of the difference in direction of velocity
from the model experiments and the GLAD drifter inferred velocities. (Bottom) to
better visualize the differences, the distribution of R1 is subtracted from all the
experiments. R2 is performing best with more occurrences at low errors. B6 is
performing better than R1.
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edge of the Loop Current Eddy has large errors associated with the
First Cyclone (FC) advecting southeastward. The FC can be seen in
the drifter tracks of Fig. 5 on August 15 at 27�N 88�W. The FC being
less than 50 km across can be marginally resolved in the models,
though it is smaller than what could be expected to be captured
by the satellite observations. The boundaries of the AC on the Flor-
ida shelf are apparent as are the currents to the northwest between
87 and 88�W 27�N.

The spatially distributed errors of the perturbed covariance
experiments are shown in Fig. 18, and the circulation features of
Fig. 4 are superimposed. For a clearer comparison, the difference
in the statistics for each experiment and those of R1 are shown
for August and September. Blue areas show errors lower than R1,
and red areas are errors higher than R1. Experiment R5 indicates
the degradation in velocity performance in August with increased
errors in the FC along the northern LCE edge, the bifurcation point
at 85.5�W 27�N, the Florida shelf AC and an overall increase in
errors in September in the northwestward flow. Experiments R2
and B6 both indicate substantial improvement over R1 and R5.
During August, R2 predicts the FC along the LCE front with lower
errors than B6. Relative to experiment R2 in August, B6 improves
the bifurcation circulation at 85.5�W 27�W, the Florida shelf AC,
and the SC circulation at 87�W 28�N. During September, B6 gener-
ally decreases overall error levels throughout the region relative to
R2. Thus experiment B6 indicates improved performance across
more mesoscale features than the other experiments.

5.3. Interpretation in the context of 4DVar

A 4DVar assimilation can be reduced through simplifying
assumptions to produce the 3DVar used here. It is useful to exam-
ine the assumptions to provide insight to the aspects 3DVar is
neglecting and how those assumptions are reflected in the results.
Consider the 4DVar solution that minimizes errors relative to a
time-evolving background state xb, observations y and the dynam-
ics A, i.e., that minimizes the cost function J:

J ¼ 1
2
dxTP�1

b dxþ 1
2
dxTATW�1Adxþ 1

2
ðHdx� dÞTR�1ðHdx� dÞ ð5Þ

where dx is the analysis increment,Pb is the background error covari-
ance, A is the tangent linearization of the dynamical system around
the background state, W is the dynamical error covariance, H is the
linearized observation operator, d ¼ ðy �HðxbÞÞ is the misfit of the
observations to the background state xb and R is the observation
error covariance. A particular choice of covariances in the 4DVar
can reduce it to the3DVar. Consider the4DVar applied over the entire
time period of interest (60 days). All model variables at all locations
and over all time steps are concatenated to form a single vector
representing the model state trajectory xb through the entire time
period. Assume that the temporal structure of background error
covariancePb is taken to be a sumof Dirac delta functions at the anal-
ysis times of the 3DVar dðt � taiÞ, where tai is the time of the ith 3DVar
analysis. This results inPb being blockdiagonalwith blocks providing
the interrelations amongst variables only at each analysis time.
Assume that observations occur only at the analysis times. The solu-
tion to (5) can be obtained by an inversion conducted at each succes-
sive analysis time. Assume the solution is a strong constraint except
at the analysis times, and thus satisfies the dynamics. Once the ith
inversion is conducted, the time-evolving state is computed simply
by integrating the analysis forward to the next analysis time. Under
these conditions, (5) represents the cost function for a cycling 3DVar.

The block diagonal form of Pb carries strong implications. Back-
ground errors beyond the analysis time are assumed to be uncor-
related. This is convenient for solving the problem in that the
analysis can be computed for each cycle independently. However,
this formulation precludes consideration of errors correlated
beyond one assimilation cycle. Fig. 10 shows that error correlations
extend out to days. Thus, when considered from the 4DVar per-
spective, the cycling interval defined in a 3DVar imposes an
assumption limiting the background error time correlation.

A 4DVar system can use a long time window in the analysis, and
its contribution to reducing the analysis error covariance is com-
puted theoretically for linear systems by Lewis et al. (2006). The
authors also provide a detailed derivation of the difference between
the analysis error covariances of the 4DVar and the Kalman filter (of
which 3DVar is a special case), which includes a proof that the Kal-
man filter solution error covariance is always greater than or equal
to the 4DVar solution error covariance. The difference lies in the
4DVar ability to propagate the observation information further in
space and time. The implicit restriction imposed by the 3DVar
assimilation cycle results in an increase in error levels.

The improved formulation for the variance amplitude Sb dem-
onstrated here can also be used in the 4DVar. However, as dis-
cussed above, error levels in the 3DVar are expected to be higher
than the 4DVar. While a similar algorithm for estimating the back-
ground error variance may be used with a 4DVar, the amplitudes
must be smaller.

For global daily predictions that are computationally intensive,
a 4DVar solution is not feasible. Thus there is continued need to
understand both the 3DVar and 4DVar approaches. Analytic for-
mulations do not represent many complex relations within Pb, thus
Fu (2012) estimates Pb based on historical model runs for methods
such as ensemble optimal interpolation (EnOI) and shows benefits

R1
R2
R5
B6

R1
R2
R5
B6

Cumulative distribution

Difference in cumulative distribution 

Magnitude of error in velocity vector (m/s)

Magnitude of error in velocity vector (m/s)

Fig. 16. (Top) cumulative distributions of the magnitude of velocity difference
between the model experiments and the GLAD drifter inferred velocities. (Bottom)
to better visualize the differences, the distribution of R1 is subtracted from all the
experiments. The B6 experiment has the highest number of occurrences at low
errors and therefore is performing best.
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over 3DVar. However, basing Pb entirely on model covariances can
introduce errors due to biases and drifts in the models. A stationary
Pb as implemented by Oke et al. (2010) avoids problems in model
drifts, but it may still be influenced by biases. This motivates the
hybrid approach in which Pb is specified as a linear combination
of model covariances and covariances based on functional formula-
tions as in Eq. (2) (Gao et al., 2013).

Another perspective on the time correlation comes from the
Rapid Environmental Assessments in which a large-scale survey
provides an initial state. Attempting to correct a system based on
under sampled features results in poor performance. On a daily
basis, the satellite coverage is unable to resolve mesoscale features
as can be seen in Fig. 10, which shows days with very little satellite
data. Thus it is not possible to accurately correct these features
using only daily data. Data spanning several days can begin to
resolve features. However, a negative consequence is that a 3DVar
analysis results in a state averaged over the data time window. In
addition, using the observations multiple times without correcting
the observation error level over-constrains the solution to the
observations. These are the problems causing poor performance
in R5. The temporal averaging results in weak horizontal gradients
and thus weak currents. The R5 distribution of error in magnitude
(Fig. 14) and distribution of magnitude of velocity difference
(Fig. 16) suffer due to this problem. The R5 distribution of direction
errors (Fig. 15) does not suffer as badly. There are roughly equal
occurrences of direction errors less than 35 degrees as for R1.
Experiment B6 mitigates the deficiencies in using observations
multiple times by emulating the effect of a long time correlation
through dividing the analysis increment by the number of days
in the increment insertion interval. As shown in Fig. 11, the
increments in B6 are very small and applied over many days.

The results from B6 indicate much improved performance over
R5 in the distribution of difference in magnitude and magnitude of
the velocity differences. B6 has the highest fraction of occurrences
at the low error levels of all the experiments (including those not
shown). The directional errors in B6 show advancement over R1
at low values but are somewhat degraded relative to R2.

6. Discussion

The GLAD experiment shows it is now possible to begin testing
underlying assumptions of ocean assimilation methods, which has
not been extensively possible before. While persistently sampling
several mesoscale features at high resolution over two months,
the data set is still just one experiment and exists only in the Gulf
of Mexico. The results and conclusions should be transferable to
other regions and to global mesoscale prediction as well. However,
predictive skill varies within different dynamical regions such as
the Gulf Stream and Kuroshio currents vs. the South China Sea
(Metzger et al., 2014b). Because the Gulf of Mexico is enclosed, pre-
diction skill is higher in this basin using the same metrics (Metzger
et al., 2014a). Also, mesoscale prediction skill is highly dependent
on the quantity and coverage of altimeter observations (Ananda
et al., 2006; Smedstad et al., 2003; Jacobs et al., 2014).

The GLAD data point to additional underlying considerations in
future direction of ocean assimilation. Many ocean data assimila-
tion methods are formulated with the objective to predict the
ocean mesoscale as developed through the GODAE program
(Cummings et al., 2009). This objective is feasible given the altim-
eter observations, which, though sparse in space and time, are
capable of sampling a portion of the mesoscale wavenumber and

(b) Number of observa�ons(a) Aug

(c) Sep

Fig. 17. (b) Number of observations in 1/8� bins during August and September 2012 and RMS magnitude of the vector velocity error of experiment R1 during August (a) and
September (c). Errors are shown only in bins with more than 30 observations. Error colorbars are in m/s.
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Fig. 18. Differences between RMS magnitudes of the vector velocity error computed for R1 and other experiments. Error levels of square root of mean of vector error
magnitude squared differenced from experiment R01. Only bins with more than 30 observations are shown. August and September 2012 are shown separately. The
circulation features of Fig. 4 are superimposed. Colorbar units are in m/s.
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frequency spectrum (Traon and Dibarboure, 1999). The long time
scales of the ocean result in a mesoscale feature being sampled
several times over a decorrelation time of one month or more.
One area that connot yet be constrained with in assimilation is
the submesoscale which is not resolved by the altimeter
observations, has large Rossby number and high ageostrophic
currents (Capet et al., 2008; Mensa et al., 2013; Zhong and
Bracco, 2013).

Three fundamental capabilities must exist to address the sub-
mesoscale. The first is observations. GLAD is a demonstration that
sufficient coverage and persistence of observations at scales below
the mesoscale are achievable. Other planned observation systems
include the Surface Water/Ocean Topography (SWOT) satellite
mission planned to provide full global 2D sea surface height imag-
ing with a resolution of kilometers (Durand et al., 2010; Fu and
Ferrari, 2008).

The second capability lies in multiscale data assimilation. Basic
research has yielded algorithms that solve the assimilation prob-
lem sequentially over scales (Brandt and Zaslavsky, 1997; Choi
et al., 2008; Haley and Lermusiaux, 2010; Lermusiaux, 2002).
Application to the submesoscale requires a first multiscale itera-
tion assimilating the mesoscale information. This problem has
been well studied. The second multiscale iteration should then
address the submesoscale.

The third capability must provide a new Pb for the submeso-
scale that removes assumptions present in Pb for the mesoscale
iteration. Amongst these are geostrophic balance relations
between the mass and velocity fields that are inappropriate for
the submesoscale as well as vertical relations in the water column.
Solving the submesoscale iteration of multiscale assimilation
requires revisiting the background error covariance Pb that will
have distinctly different horizontal, vertical and temporal struc-
tures than the mesoscale. Once again, we will be required to test
new Pb formulations for the submesoscale.

7. Conclusions

Our analysis shows that background error variance amplitude
and time correlation are the most sensitive components within
the background error covariance Pb. The extraordinarily dense
GLAD data set provides substantially greater information to inves-
tigate the relative importance of assumptions in the components
of Pb. This is a problem not previously addressable due to sparse
observations. The assimilation systems are used to emulate the
long time correlations by using data over several prior days in
each daily cycle. When using data multiple times, the modeled
currents are weak due to the analysis providing a best estimate
to match an average over 7 days. This is alleviated by dividing
the analysis increment fields by the data time window length
to more properly weight the data. The results pave the way
toward implementations that can properly account for the time
correlations important in 3DVar and are more explicitly apparent
and controllable in 4DVar through the analysis time window.
While 4DVar can take into account a longer influence time of
observations, care must be taken to ensure the analysis window
is sufficiently long to account for the long time correlation in
the ocean.

A study such as this would not be possible without an exten-
sive set of observations covering a significant number of meso-
scale features for a sustained time period. Prior hypothesized
formulations for the background error variance amplitude and
time correlation are rejected in favor of new understanding. Such
data sets become reference points that are used throughout
future research. The GLAD experiment points the direction
toward the future.

Acknowledgments

This research is funded by a Grant from BP/The Gulf of Mexico
Research Initiative to the Consortium for Advanced Research on
the Transport of Hydrocarbon in the Environment (CARTHE). The
GLAD drifter trajectory dataset used here is publicly available
(http://dx.doi.org/10.7266/N7VD6WC8). This paper is contribution
NRL/JA/7320—11-1001and has been approved for public release.

References

Ananda, P., Yannice, F., Gilles, L., Le Traon, P.-Y., 2006. Improved description of the
ocean mesoscale variability by combining four satellite altimeters. Geophys.
Res. Lett. 33, 13–16.

Barron, C.N., Kara, A.B., Hurlburt, H.E., Rowley, C., Smedstad, L.F., 2004. Sea surface
height predictions from the global navy coastal ocean model (NCOM) during
1998–2001. J. Atmos. Oceanic Technol. 21 (12), 1876–1893.

Barron, C.N., Kara, A.B., Martin, P.J., Rhodes, R.C., 2006. Formulation, implementation
and examination of the vertical coordinate choices in the global Navy coastal
ocean model (NCOM). Ocean Modell. 11 (3), 347–375.

Barron, C.N., Kara, A.B., Rhodes, R.C., Rowley, C., Smedstad, L.F., 2007. Validation Test
Report for the 1/8 Global Navy Coastal Ocean Model Nowcast/Forecast System,
NRL Tech Report NRL/MR/7320–07-9019.

Bell, M.J., Lefebvre, M., Le Traon, P.Y., Smith, N., Wilmer-Becker, K., 2009. GODAE The
global ocean data assimilation experiment. Oceanography 22 (3), 14–21.

Bennett, A.F., 2002. Inverse modeling of the ocean and atmosphere, Cambridge,
ISBN 0-521-81373-5, 235 pp.

Brandt, A., Zaslavsky, L.Y., 1997. Multiscale algorithm for atmospheric data
assimilation. SIAM J. Sci. Comput. 18 (3), 949–956.

Brasseur, P. et al., 2005. Data assimilation for marine monitoring and prediction: the
MERCATOR operational assimilation systems and the MERSEA developments. Q.
J. R. Meteor. Soc. 131 (613), 3561–3582.

Capet, X., Mcwilliams, J.C., Mokemaker, M.J., Shchepetkin, A.F., 2008. Mesoscale to
submesoscale transition in the California current system. Part I: flow structure,
eddy flux, and observational tests. J. Phys. Oceanogr. 38 (1), 29–43.

Carnes, M.R., Helber, R.W., Barron, C.N., Dastugue, J.M., 2010. Validation Test Report
for GDEM4, NRL Report NRL/MR/7330-10-9271.

Carrier, M.J., Ngodock, H., 2010. Background-error correlation model based on the
implicit solution of a diffusion equation. Ocean Modell. 35 (1–2), 45–53.

Choi, H., McDowell, D.L., Allen, J.K., Rosen, D., Mistree, F., 2008. An inductive design
exploration method for robust multiscale materials design. J. Mech. Des. 130
(3).

Cobas-Garcia, M., Gomez-Tato, A., Cotelo-Queijo, C., Vazquez-Cendon, M.E.,
Carracedo-Garcia, P., Costa, P., Ruiz-Villarreal, M., 2012. First approach to the
application of operational 4DVAR data assimilation to the regional ocean model
system. Numer. Methods Hyperbolic Equ., 393.

Coelho, E.F., Hogan, P., Jacobs, G., Thoppil, P., Huntley, H., Haus, B., Lipphardt, B., Jr.,
Kirwan, A.D., Jr., Ryan, E., Olascoaga, J., Novelli, G., Beron-Vera, F., Haza, A., Poje,
A., Griffa, A., Ozgokmen, T., Bogucki, D., Chen, S., Curcic, M., Iskandarani, M., Judt,
F., Laxague, N., Mariano, A., Reniers, A., Smith, C., Valle-Levinson, A., Wei, M.,
2014. Ocean current estimation using a multi-model ensemble Kalman filter
during the grand lagrangian deployment experiment (GLAD), Ocean Modeling,
Virtual Special Issue (VSI): gulf of Mexico modelling: lessons learned from the
spill (in review OCEMOD D-13-00166).

Crosby, D.S., Breaker, L.C., Gemmill, W.H., 1993. A proposed definition for vector
correlation in geophysics: theory and application. J. Atmos. Oceanic Technol. 10,
355–357.

Cummings, J.A., Smedstad, O.M., 2013. Variational data assimilation for the global
ocean data assimilation for atmospheric. Oceanic Hydrol. Appl. II, Chapter 13.

Cummings, J., Bertino, L., Brasseur, P., Fukumori, I., Kamachi, M., Martin, M.J.,
Mogensen, K., Oke, P., Testut, C.E., Verron, J., Weaver, A., 2009. Ocean data
assimilation systems for GODAE. Oceanography 22 (3), 96–109. http://
dx.doi.org/10.5670/oceanog.2009.69.

Cummings, J.A., 2005. Operational multivariate ocean data assimilation. Q. J. Roy.
Meteor. Soc. 131 (613), 3583–3604.

Daley, R., 1996. Atmospheric Data Analysis. Cambridge University Press, 438 pp.
Daley, Roger R., Barker, Edward E., 2001. NAVDAS Source Book: NRL Atmospheric

Variational Data Assimilation System. NRL Publication NRL/PU/7530-01-441,
Monterey, CA, 160 pp.

Davis, R.E., 1985. Drifter observations of coastal surface currents during CODE: the
method and descriptive view. J. Geophys. Res. 90, 4741–4755.

Derber, John, Rosati, Anthony, 1989. A global oceanic data assimilation system. J.
Phys. Oceanogr. 19, 1333–1347, http://dx.doi.org/10.1175/1520-0485(1989)
019<1333:AGODAS>2.0.CO;2.

Durand, M., Lee-Lueng, F., Lettenmaier, D.P., Alsdorf, D.E., Rodriguez, E., Esteban-
Fernandez, D., 2010. The surface water and ocean topography mission:
observing terrestrial surface water and oceanic submesoscale Eddies. Proc.
IEEE 98 (5), 766–779. http://dx.doi.org/10.1109/JPROC.2010.2043031.

Fox, D.N., Barron, C.N., Carnes, M.R., Booda, M., Peggion, G., Gurley, J.V., 2002. The
modular ocean data assimilation system. Oceanography 15 (1), 22–28. http://
dx.doi.org/10.5670/oceanog.2002.33.

Fu, Lee-Lueng, 2010. Determining ocean circulation and sea level from satellite
altimetry: progress and challenges. Oceanogr. Space, 147–163.

116 G.A. Jacobs et al. / Ocean Modelling 83 (2014) 98–117

http://dx.doi.org/10.7266/N7VD6WC8
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0325
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0325
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0325
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0010
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0010
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0010
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0015
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0015
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0015
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0400
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0400
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0030
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0030
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0035
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0035
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0035
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0040
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0040
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0040
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0050
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0050
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0055
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0055
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0055
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0330
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0330
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0330
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0330
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0070
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0070
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0070
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0335
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0335
http://dx.doi.org/10.5670/oceanog.2009.69
http://dx.doi.org/10.5670/oceanog.2009.69
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0405
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0405
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0345
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0100
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0100
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0105
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0105
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0105
http://dx.doi.org/10.1109/JPROC.2010.2043031
http://dx.doi.org/10.5670/oceanog.2002.33
http://dx.doi.org/10.5670/oceanog.2002.33
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0125
http://refhub.elsevier.com/S1463-5003(14)00134-6/h0125


Fu, W.W., 2012. Altimetric data assimilation by EnOI and 3DVAR in a tropical pacific
model: impact on the simulation of variability. Adv. Atmos. Sci. 29 (4), 823–837.

Fu, L.-L., Ferrari, R., 2008. Observing oceanic submesoscale processes from space.
Eos Trans. Am. Geophys. Union 89 (48). http://dx.doi.org/10.1029/
2008EO480003, 488–488.

Gao, J.D., Xue, M., Stensrud, D.J., 2013. The development of a hybrid EnKF-3DVAR
algorithm for storm-scale data assimilation. Adv. Meteorol.

Gaspari, G., Cohn, S.E., 1999. Construction of correlation functions in two and three
dimensions. Q. J. R. Meteorol. Soc. 125, 723–757.

Gawarkiewicz, G. et al., 2011. Circulation and intrusions northeast of Taiwan:
chasing and predicting uncertainty in the cold dome. Oceanography 24 (4),
110–121.

Haley, P.J., Lermusiaux, P.F.J., 2010. Multiscale two-way embedding schemes for
free-surface primitive equations in the ‘‘Multidisciplinary Simulation,
Estimation and Assimilation System’’. Ocean Dyn. 60 (6), 1497–1537.

Haller, G., Beron-Vera, F.J., 2012. Geodesic theory of transport barriers in two-
dimensional flows. Physica D 241 (20), 1680–1702.

Haller, G., Yuan, G., 2000. Lagrangian coherent structures and mixing in two-
dimensional turbulence. Physica D 147, 352–370.

Hodur, R.M., 1997. The naval research laboratory’s coupled ocean/atmosphere
mesoscale prediction system (COAMPS). Mon. Weather Rev. 125, 1414–1430.
http://dx.doi.org/10.1175/1520-0493.

Jacobs, G.A., Barron, C.N., Rhodes, R.C., 2001. Mesoscale characteristics. J. Geophys.
Res. 106 (C9), 19581–19595.

Jacobs, G.A., Richman, J.G., Doyle, J.D., Spence, P.L., Bartels, B.P., Barron, C.N., Helber,
R.W., Bub, F.L., 2014. Simulating conditional deterministic predictability within
ocean frontogenesis. Ocean Modell. 78, 1–16.
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